Sunday, 29 September 2013

Microsys A1 Website Scraper Review

The A1 scraper by Microsys is a program that is mainly used to scrape websites to extract data in large quantities for later use in webservices. The scraper works to extract text, URLs etc., using multiple Regexes and saving the output into a CSV file. This tool is can be compared with other web harvesting and web scraping services.
How it works
This scraper program works as follows:
Scan mode

    Go to the ScanWebsite tab and enter the site’s URL into the Path subtab.
    Press the ‘Start scan‘ button to cause the crawler to find text, links and other data on this website and cache them.

Important: URLs that you scrape data from have to pass filters defined in both analysis filters and output filters. The defining of those filters can be set at the Analysis filters and Output filters subtabs respectively. They must be set at the website analysis stage (mode).
Extract mode

    Go to the Scraper Options tab
    Enter the Regex(es) into the Regex input area.
    Define the name and path of the output CSV file.
    The scraper automatically finds and extracts the data according to Regex patterns.

The result will be stored in one CSV file for all the given URLs.

There is a need to mention that the set of regular expressions will be run against all the pages scraped.
Some more scraper features

Using the scraper as a website crawler also affords:

    URL filtering.
    Adjustment of the speed of crawling according to service needs rather than server load.

If  you need to extract data from a complex website, just disable Easy mode: out press the  button. A1 Scraper’s full tutorial is available here.
Conclusion

The A1 Scraper is good for mass gathering of URLs, text, etc., with multiple conditions set. However this scraping tool is designed for using only Regex expressions, which can increase the parsing process time greatly.



Source: http://extract-web-data.com/microsys-a1-website-scraper-review/

Friday, 27 September 2013

Visual Web Ripper: Using External Input Data Sources

Sometimes it is necessary to use external data sources to provide parameters for the scraping process. For example, you have a database with a bunch of ASINs and you need to scrape all product information for each one of them. As far as Visual Web Ripper is concerned, an input data source can be used to provide a list of input values to a data extraction project. A data extraction project will be run once for each row of input values.

An input data source is normally used in one of these scenarios:

    To provide a list of input values for a web form
    To provide a list of start URLs
    To provide input values for Fixed Value elements
    To provide input values for scripts

Visual Web Ripper supports the following input data sources:

    SQL Server Database
    MySQL Database
    OleDB Database
    CSV File
    Script (A script can be used to provide data from almost any data source)

To see it in action you can download a sample project that uses an input CSV file with Amazon ASIN codes to generate Amazon start URLs and extract some product data. Place both the project file and the input CSV file in the default Visual Web Ripper project folder (My Documents\Visual Web Ripper\Projects).

For further information please look at the manual topic, explaining how to use an input data source to generate start URLs.


Source: http://extract-web-data.com/visual-web-ripper-using-external-input-data-sources/

Thursday, 26 September 2013

Using External Input Data in Off-the-shelf Web Scrapers

There is a question I’ve wanted to shed some light upon for a long time already: “What if I need to scrape several URL’s based on data in some external database?“.

For example, recently one of our visitors asked a very good question (thanks, Ed):

    “I have a large list of amazon.com asin. I would like to scrape 10 or so fields for each asin. Is there any web scraping software available that can read each asin from a database and form the destination url to be scraped like http://www.amazon.com/gp/product/{asin} and scrape the data?”

This question impelled me to investigate this matter. I contacted several web scraper developers, and they kindly provided me with detailed answers that allowed me to bring the following summary to your attention:
Visual Web Ripper

An input data source can be used to provide a list of input values to a data extraction project. A data extraction project will be run once for each row of input values. You can find the additional information here.
Web Content Extractor

You can use the -at”filename” command line option to add new URLs from TXT or CSV file:

    WCExtractor.exe projectfile -at”filename” -s

projectfile: the file name of the project (*.wcepr) to open.
filename – the file name of the CSV or TXT file that contains URLs separated by newlines.
-s – starts the extraction process

You can find some options and examples here.
Mozenda

Since Mozenda is cloud-based, the external data needs to be loaded up into the user’s Mozenda account. That data can then be easily used as part of the data extracting process. You can construct URLs, search for strings that match your inputs, or carry through several data fields from an input collection and add data to it as part of your output. The easiest way to get input data from an external source is to use the API to populate data into a Mozenda collection (in the user’s account). You can also input data in the Mozenda web console by importing a .csv file or importing one through our agent building tool.

Once the data is loaded into the cloud, you simply initiate building a Mozenda web agent and refer to that Data list. By using the Load page action and the variable from the inputs, you can construct a URL like http://www.amazon.com/gp/product/%asin%.
Helium Scraper

Here is a video showing how to do this with Helium Scraper:

The video shows how to use the input data as URLs and as search terms. There are many other ways you could use this data, way too many to fit in a video. Also, if you know SQL, you could run a query to get the data directly from an external MS Access database like
SELECT * FROM [MyTable] IN "C:\MyDatabase.mdb"

Note that the database needs to be a “.mdb” file.
WebSundew Data Extractor
Basically this allows using input data from external data sources. This may be CSV, Excel file or a Database (MySQL, MSSQL, etc). Here you can see how to do this in the case of an external file, but you can do it with a database in a similar way (you just need to write an SQL script that returns the necessary data).
In addition to passing URLs from the external sources you can pass other input parameters as well (input fields, for example).
Screen Scraper

Screen Scraper is really designed to be interoperable with all sorts of databases. We have composed a separate article where you can find a tutorial and a sample project about scraping Amazon products based on a list of their ASINs.

Source: http://extract-web-data.com/using-external-input-data-in-off-the-shelf-web-scrapers/

Wednesday, 25 September 2013

A simple way to turn a website into JSON

Recently, while surfing the web I stumbled upon an simple web scraping service named Web Scrape Master. It is a kind of RESTful web service that extracts data from a specified web site and returns it to you in JSON format.
How it works

Though I don’t know what this service may be useful for, I still like its simplicity: all you need to do is to make an HTTP GET request, passing all necessary parameters in the query string:
http://webscrapemaster.com/api/?url={url}&xpath={xpath}&attr={attr}&callback={callback}

    url  - the URL of the website you want to scrape
    xpath – xpath determining the data you need to extract
    attr - attribute the name you need to get the value of (optional)
    callback - JSON callback function (optional)

For example, for the following request to our testing ground:

http://webscrapemaster.com/api/?url=http://testing-ground.extract-web-data.com/blocks&xpath=//div[@id=case1]/div[1]/span[1]/div

You will get the following response:

[{"text":"<div class='name'>Dell Latitude D610-1.73 Laptop Wireless Computer</div>","attrs":{"class":"name"}}]
Visual Web Scraper

Also, this service offers a special visual tool for building such requests. All you need to do is to enter the URL of the website and click to the element you need to scrape:
Visual Web Scraper
Conclusion

Though I understand that the developer of this service is attempting to create a simple web scraping service, it is still hard to imagine where it can be useful. The task that the service does can be easily accomplished by means of any language.

Probably if you already have software receiving JSON from the web, and you want to feed it with data from some website, then you may find this service useful. The other possible application is to hide your IP when you do web scraping. If you have other ideas, it would be great if you shared them with us.



Source: http://extract-web-data.com/a-simple-way-to-turn-a-website-into-json/

Tuesday, 24 September 2013

Selenium IDE and Web Scraping

Selenium is a browser automation framework that includes IDE, Remote Control server and bindings of various flavors including Java, .Net, Ruby, Python and other. In this post we touch on the basic structure of the framework and its application to  Web Scraping.
What is Selenium IDE


Selenium IDE is an integrated development environment for Selenium scripts. It is implemented as a Firefox plugin, and it allows recording browsers’ interactions in order to edit them. This works well for software tests, composing and debugging. The Selenium Remote Control is a server specific for a particular environment; it causes custom scripts to be implemented for controlled browsers. Selenium deploys on Windows, Linux, and iOS. How various Selenium components are supported with major browsers read here.
What does Selenium do and Web Scraping

Basically Selenium automates browsers. This ability is no doubt to be applied to web scraping. Since browsers (and Selenium) support JavaScript, jQuery and other methods working with dynamic content why not use this mix for benefit in web scraping, rather than to try to catch Ajax events with plain code? The second reason for this kind of scrape automation is browser-fasion data access (though today this is emulated with most libraries).

Yes, Selenium works to automate browsers, but how to control Selenium from a custom script to automate a browser for web scraping? There are Selenium PHP and other language libraries (bindings) providing for scripts to call and use Selenium. It is possible to write Selenium clients (using the libraries) in almost any language we prefer, for example Perl, Python, Java, PHP etc. Those libraries (API), along with a server, the Java written server that invokes browsers for actions, constitute the Selenum RC (Remote Control). Remote Control automatically loads the Selenium Core into the browser to control it. For more details in Selenium components refer to here.



A tough scrape task for programmer

“…cURL is good, but it is very basic.  I need to handle everything manually; I am creating HTTP requests by hand.
This gets difficult – I need to do a lot of work to make sure that the requests that I send are exactly the same as the requests that a browser would
send, both for my sake and for the website’s sake. (For my sake
because I want to get the right data, and for the website’s sake
because I don’t want to cause error messages or other problems on their site because I sent a bad request that messed with their web application).  And if there is any important javascript, I need to imitate it with PHP.
It would be a great benefit to me to be able to control a browser like Firefox with my code. It would solve all my problems regarding the emulation of a real browser…
it seems that Selenium will allow me to do this…” -Ryan S

Yes, that’s what we will consider below.
Scrape with Selenium

In order to create scripts that interact with the Selenium Server (Selenium RC, Selenium Remote Webdriver) or create local Selenium WebDriver script, there is the need to make use of language-specific client drivers (also called Formatters, they are included in the selenium-ide-1.10.0.xpi package). The Selenium servers, drivers and bindings are available at Selenium download page.
The basic recipe for scrape with Selenium:

    Use Chrome or Firefox browsers
    Get Firebug or Chrome Dev Tools (Cntl+Shift+I) in action.
    Install requirements (Remote control or WebDriver, libraries and other)
    Selenium IDE : Record a ‘test’ run thru a site, adding some assertions.
    Export as a Python (other language) script.
    Edit it (loops, data extraction, db input/output)
    Run script for the Remote Control

The short intro Slides for the scraping of tough websites with Python & Selenium are here (as Google Docs slides) and here (Slide Share).
Selenium components for Firefox installation guide

For how to install the Selenium IDE to Firefox see  here starting at slide 21. The Selenium Core and Remote Control installation instructions are there too.
Extracting for dynamic content using jQuery/JavaScript with Selenium

One programmer is doing a similar thing …

1. launch a selenium RC (remote control) server
2. load a page
3. inject the jQuery script
4. select the interested contents using jQuery/JavaScript
5. send back to the PHP client using JSON.

He particularly finds it quite easy and convenient to use jQuery for
screen scraping, rather than using PHP/XPath.
Conclusion

The Selenium IDE is the popular tool for browser automation, mostly for its software testing application, yet also in that Web Scraping techniques for tough dynamic websites may be implemented with IDE along with the Selenium Remote Control server. These are the basic steps for it:

    Record the ‘test‘ browser behavior in IDE and export it as the custom programming language script
    Formatted language script runs on the Remote Control server that forces browser to send HTTP requests and then script catches the Ajax powered responses to extract content.

Selenium based Web Scraping is an easy task for small scale projects, but it consumes a lot of memory resources, since for each request it will launch a new browser instance.



Source: http://extract-web-data.com/selenium-ide-and-web-scraping/

Monday, 23 September 2013

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.




Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396

Do You Know Why Reliable Data Entry Services Mean a Lot to Your Business?

Data Entry Service is something that would go well with the term ubiquitous. No computing environment is likely to run effectively and to generate expected results or appropriate outputs only if it gets well-processed data as its input. Dealing with high volume of data is now a familiar prospect considering the rate at which companies seek to expand their commercial base both online and offline. Potentially data entry services hold great substance no wonder why they are being respected and received well by many businesses dealing with piles of data elements. Managing such processes with technical efficiency by letting the professionals take up such jobs is something that is comprehensible quite naturally.

Understanding the real essence of its potential many multinational companies set up separate teams for looking after data entry services or outsource their projects to reliable companies that demonstrate professionalism of highest order. What is the motto behind doing so? Crucial possibility of obtaining a benchmark standard by making fullest use of the available data resources so that everything becomes computable and automated is a key rationale for which the big and thriving companies do so. Maybe the real chance for gaining a better ROI is what that makes many conglomerates invest more in such services. No doubt there has been a drastic change in the level of awareness these companies show as to employing adept personnel who recognize its invaluable nature.

Data entry services are mainly catered to accommodate the fundamental notions concerning how a business aims at transforming hordes of organized data in different formats to well configured systems looking identical by means of a single format that looks meaningful when processed and structured. It is high time now the companies realize why they should get rid of systems holding disorganized data to redeem their business from loss. With a lot of processing systems surfacing of late and a notable furtherance of information systems, which have replaced manual conventions of data entry why should not such business firms get used to such a change and orchestrate their path to success?

Decisive resources--- time and money---which mean a lot to companies themselves and to their direct competitors might determine the resolution to swap over the existing procedures for data handling. Surely they would. But bothering on this issue is already a waste of time and money isn't it? Investing in reliable data entry services which offer technically stronger databases that perform robustly is a strategic business move since this at least paves way for companies to use aforementioned resources and get something in return.

I have been calling for the data entry services to be doled out to reliable providers since you started reading this article right? What made me stress on this when there are quite a lot of technical things available to discuss? Minding confidentiality and integrity of data might seem as a trivial issue at first but only this lot of dependable data entry services would let you know its real worth. Data can be tampered, processed, edited to some specifications making it unfit for further processing at the end.

How on earth can you look forward to making money with data that is already unfit for use? Preserving original characteristics of data is something you must rightly hence going through a list of reliable data entry services is the best thing you should be doing now.

Isn't it something important to catch hold of a reliable data entry services provider? If you think so simply follow this link and you would get close to having a high-quality data entry services serve your business needs.



Source: http://ezinearticles.com/?Do-You-Know-Why-Reliable-Data-Entry-Services-Mean-a-Lot-to-Your-Business?&id=4634254

Sunday, 22 September 2013

Customer Relationship Management (CRM) Using Data Mining Services

In today's globalized marketplace Customer relationship management (CRM) is deemed as crucial business activity to compete efficiently and outdone the competition. CRM strategies heavily depend on how effectively you can use the customer information in meeting their needs and expectations which in turn leads to more profit.

Some basic questions include - what are their specific needs, how satisfied they are with your product or services, is there a scope of improvement in existing product/service and so on. For better CRM strategy you need a predictive data mining models fueled by right data and analysis. Let me give you a basic idea on how you can use Data mining for your CRM objective.

Basic process of CRM data mining includes:
1. Define business goal
2. Construct marketing database
3. Analyze data
4. Visualize a model
5. Explore model
6. Set up model & start monitoring

Let me explain last three steps in detail.

Visualize a Model:
Building a predictive data model is an iterative process. You may require 2-3 models in order to discover the one that best suit your business problem. In searching a right data model you may need to go back, do some changes or even change your problem statement.

In building a model you start with customer data for which the result is already known. For example, you may have to do a test mailing to discover how many people will reply to your mail. You then divide this information into two groups. On the first group, you predict your desired model and apply this on remaining data. Once you finish the estimation and testing process you are left with a model that best suits your business idea.

Explore Model:
Accuracy is the key in evaluating your outcomes. For example, predictive models acquired through data mining may be clubbed with the insights of domain experts and can be used in a large project that can serve to various kinds of people. The way data mining is used in an application is decided by the nature of customer interaction. In most cases either customer contacts you or you contact them.

Set up Model & Start Monitoring:
To analyze customer interactions you need to consider factors like who originated the contact, whether it was direct or social media campaign, brand awareness of your company, etc. Then you select a sample of users to be contacted by applying the model to your existing customer database. In case of advertising campaigns you match the profiles of potential users discovered by your model to the profile of the users your campaign will reach.

In either case, if the input data involves income, age and gender demography, but the model demands gender-to-income or age-to-income ratio then you need to transform your existing database accordingly.



Source: http://ezinearticles.com/?Customer-Relationship-Management-%28CRM%29-Using-Data-Mining-Services&id=4641198

Friday, 20 September 2013

Data Extraction Services - A Helpful Hand For Large Organization

The data extraction is the way to extract and to structure data from not structured and semi-structured electronic documents, as found on the web and in various data warehouses. Data extraction is extremely useful for the huge organizations which deal with considerable amounts of data, daily, which must be transformed into significant information and be stored for the use this later on.

Your company with tons of data but it is difficult to control and convert the data into useful information. Without right information at the right time and based on half of accurate information, decision makers with a company waste time by making wrong strategic decisions. In high competing world of businesses, the essential statistics such as information customer, the operational figures of the competitor and the sales figures inter-members play a big role in the manufacture of the strategic decisions. It can help you to take strategic business decisions that can shape your business' goals..

Outsourcing companies provide custom made services to the client's requirements. A few of the areas where it can be used to generate better sales leads, extract and harvest product pricing data, capture financial data, acquire real estate data, conduct market research , survey and analysis, conduct product research and analysis and duplicate an online database..

The different types of Data Extraction Services:

    Database Extraction:
    Reorganized data from multiple databases such as statistics about competitor's products, pricing and latest offers and customer opinion and reviews can be extracted and stored as per the requirement of company.
    Web Data Extraction:
    Web Data Extraction is also known as data Extraction which is usually referred to the practice of extract or reading text data from a targeted website.

Businesses have now realized about the huge benefits they can get by outsourcing their services. Then outsourcing is profitable option for business. Since all projects are custom based to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure are among the many advantages that outsourcing brings.

Advantages of Outsourcing Data Extraction Services:

    Improved technology scalability
    Skilled and qualified technical staff who are proficient in English
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

By outsourcing, you can definitely increase your competitive advantages. Outsourcing of services helps businesses to manage their data effectively, which in turn would enable them to experience an increase in profits.




Source: http://ezinearticles.com/?Data-Extraction-Services---A-Helpful-Hand-For-Large-Organization&id=2477589

Thursday, 19 September 2013

Data Mining Software - Discover Software Modernization

Data mining software is usually an application that one uses and covers mostly with one's knowledge in the discovery of software modernization. Mining data software involves the understanding of the software artifacts that exist and the mining data tools. This process has very close relations with reverse engineering. The knowledge that one gains from studying data software that exists is usually presented in forms of models and by doing these queries one can be in a position to make his personal data mining software. With the knowledge that someone gains it must be applicable and one must also know the mining data tools that are suppose to be used apart from the soft wares. One can be able to know very widely about the mining data tools that are there in mining data software by doing computer science as a course. Computer science covers widely on what are the procedures, steps of mining data software and how can use the mining data tools.

This software is mostly used in making of databases schemes. Making of databases is not as easy as many would think it requires one to have some knowledge about computer engineering and the basic concepts of computers.;This software is mostly used in data crawling because it can be in a position to store data and one can be able to retrieve the data when needed.

The softwares are not that cheap they come in different varieties and it will depend on which information or the database on which one is coming up with.

Data mining software are usually in different levels there is the data level, design level, application level, architectural level, call graph level and program level it will depend on which level one is covering and this come together with mining data tools.

Data software's have increased rapidly through the introduction of computers and ERP definition. Computers hackers have been able to get the softwares at a very low price and this has made data mining to become very easy and quick to use in the shops and supermarkets and also government institutions. One cannot do data crawling without having the basic knowledge about data mining soft wares because soft wares are the programmes that are usually installed into the computer and without the programmes then no data can be processed.

There are a lot of challenges that come with the use of the mining soft ware. One can easily crush the software he is using or the softwares can easily break they are normally sold on CDS one can easily break it or loose it.

High chances of losing the data that someone is coming up with is very high because computers easily crash due to some difficulties that they experience or a virus can easily crush the computer.

Mining software take a very large space and in most of the computers. The reason behind this is because, data crawling use graphics. Graphics usually occupy a lot of space in terms of the size of the local disk. One is suppose to look for a computer that has very good memory. Data crawling is something that needs to be updated each and every time something appears along the way.

Victor C. has many hobbies and interests. As well being a keen blogger and article writer for many sites, he has also recently created a site focusing on data mining tools. The site is constantly being updated.



Source: http://ezinearticles.com/?Data-Mining-Software---Discover-Software-Modernization&id=5054991

Wednesday, 18 September 2013

Data Entry Outsourcing - 6 Key Benefits of Outsourced Data Entry

The effective data typing services are must and have to outsource because of globalization. Without information, no company can go ahead and become successful. At every point of making decisions, proper information is essential. So data is one of the most important parts in any organization. There must be proper management to keep the business running smoothly and effectively.

If you want reliable source for data handling, hire typing service company to outsource data entry task. Currently, solutions for every type of business needs are available at reasonable rate. As business grow, it is very hard to manage huge information. So, companies are turning to data entry outsourcing.

Here are the key benefits of data entry outsourcing:

1. All-in-One: data entry firms are offering numbers of services like, data processing, scanning, information formatting, document conversion, indexing and others. They also understand your requirement and deliver the output required format such as Word, Excel, JPG, HTML, XML and Other.

2. Resolve the Issues: As company grows, there are many issues arise like information about employees, benefits, healthcare for them, tuning with rapidly changing technologies, latest business information and others. If organization outsources some of their responsibilities, various issues get resolved quickly and automatically.

3. Better Services: You can expect superior data management and high quality services from outsourcing companies. They have experienced and skilled professionals with latest technologies to deliver unexpected result and stay ahead of other.

4. Least Cost: You can lower down your capital cost of infrastructure and other cost of salary, stationery and other, if you outsource data typing task. Through offshore companies, you can easily save up to 60% on data typing services.

5. Higher Efficiency: If your employees are free from routine and uninteresting process of entering information, they can deliver better result. Ultimately, this can increase the job satisfaction level and efficiency. You can expect high output at lower costs.

6. Place of Outsourcing: You must think about the outsourcing country. India is chosen by various companies for data typing outsourcing. At India, you can get benefits of better quality, enough infrastructure, quick delivery, skilled experts at very low rates.

You can easily reduce tons of time-consuming and boring responsibilities by outsourcing.

Bea Arthur is a quality controller at Data Entry India that provides Data Entry Services, Data Conversion Services and Data Processing Services. They are having more than 17 years of experience in data entry outsourcing.




Source: http://ezinearticles.com/?Data-Entry-Outsourcing---6-Key-Benefits-of-Outsourced-Data-Entry&id=4253927

Tuesday, 17 September 2013

Backtesting & Data Mining

Introduction

In this article we'll take a look at two related practices that are widely used by traders called Backtesting and Data Mining. These are techniques that are powerful and valuable if we use them correctly, however traders often misuse them. Therefore, we'll also explore two common pitfalls of these techniques, known as the multiple hypothesis problem and overfitting and how to overcome these pitfalls.

Backtesting

Backtesting is just the process of using historical data to test the performance of some trading strategy. Backtesting generally starts with a strategy that we would like to test, for instance buying GBP/USD when it crosses above the 20-day moving average and selling when it crosses below that average. Now we could test that strategy by watching what the market does going forward, but that would take a long time. This is why we use historical data that is already available.

"But wait, wait!" I hear you say. "Couldn't you cheat or at least be biased because you already know what happened in the past?" That's definitely a concern, so a valid backtest will be one in which we aren't familiar with the historical data. We can accomplish this by choosing random time periods or by choosing many different time periods in which to conduct the test.

Now I can hear another group of you saying, "But all that historical data just sitting there waiting to be analyzed is tempting isn't it? Maybe there are profound secrets in that data just waiting for geeks like us to discover it. Would it be so wrong for us to examine that historical data first, to analyze it and see if we can find patterns hidden within it?" This argument is also valid, but it leads us into an area fraught with danger...the world of Data Mining

Data Mining

Data Mining involves searching through data in order to locate patterns and find possible correlations between variables. In the example above involving the 20-day moving average strategy, we just came up with that particular indicator out of the blue, but suppose we had no idea what type of strategy we wanted to test? That's when data mining comes in handy. We could search through our historical data on GBP/USD to see how the price behaved after it crossed many different moving averages. We could check price movements against many other types of indicators as well and see which ones correspond to large price movements.

The subject of data mining can be controversial because as I discussed above it seems a bit like cheating or "looking ahead" in the data. Is data mining a valid scientific technique? On the one hand the scientific method says that we're supposed to make a hypothesis first and then test it against our data, but on the other hand it seems appropriate to do some "exploration" of the data first in order to suggest a hypothesis. So which is right? We can look at the steps in the Scientific Method for a clue to the source of the confusion. The process in general looks like this:

Observation (data) >>> Hypothesis >>> Prediction >>> Experiment (data)

Notice that we can deal with data during both the Observation and Experiment stages. So both views are right. We must use data in order to create a sensible hypothesis, but we also test that hypothesis using data. The trick is simply to make sure that the two sets of data are not the same! We must never test our hypothesis using the same set of data that we used to suggest our hypothesis. In other words, if you use data mining in order to come up with strategy ideas, make sure you use a different set of data to backtest those ideas.

Now we'll turn our attention to the main pitfalls of using data mining and backtesting incorrectly. The general problem is known as "over-optimization" and I prefer to break that problem down into two distinct types. These are the multiple hypothesis problem and overfitting. In a sense they are opposite ways of making the same error. The multiple hypothesis problem involves choosing many simple hypotheses while overfitting involves the creation of one very complex hypothesis.

The Multiple Hypothesis Problem

To see how this problem arises, let's go back to our example where we backtested the 20-day moving average strategy. Let's suppose that we backtest the strategy against ten years of historical market data and lo and behold guess what? The results are not very encouraging. However, being rough and tumble traders as we are, we decide not to give up so easily. What about a ten day moving average? That might work out a little better, so let's backtest it! We run another backtest and we find that the results still aren't stellar, but they're a bit better than the 20-day results. We decide to explore a little and run similar tests with 5-day and 30-day moving averages. Finally it occurs to us that we could actually just test every single moving average up to some point and see how they all perform. So we test the 2-day, 3-day, 4-day, and so on, all the way up to the 50-day moving average.

Now certainly some of these averages will perform poorly and others will perform fairly well, but there will have to be one of them which is the absolute best. For instance we may find that the 32-day moving average turned out to be the best performer during this particular ten year period. Does this mean that there is something special about the 32-day average and that we should be confident that it will perform well in the future? Unfortunately many traders assume this to be the case, and they just stop their analysis at this point, thinking that they've discovered something profound. They have fallen into the "Multiple Hypothesis Problem" pitfall.

The problem is that there is nothing at all unusual or significant about the fact that some average turned out to be the best. After all, we tested almost fifty of them against the same data, so we'd expect to find a few good performers, just by chance. It doesn't mean there's anything special about the particular moving average that "won" in this case. The problem arises because we tested multiple hypotheses until we found one that worked, instead of choosing a single hypothesis and testing it.

Here's a good classic analogy. We could come up with a single hypothesis such as "Scott is great at flipping heads on a coin." From that, we could create a prediction that says, "If the hypothesis is true, Scott will be able to flip 10 heads in a row." Then we can perform a simple experiment to test that hypothesis. If I can flip 10 heads in a row it actually doesn't prove the hypothesis. However if I can't accomplish this feat it definitely disproves the hypothesis. As we do repeated experiments which fail to disprove the hypothesis, then our confidence in its truth grows.

That's the right way to do it. However, what if we had come up with 1,000 hypotheses instead of just the one about me being a good coin flipper? We could make the same hypothesis about 1,000 different people...me, Ed, Cindy, Bill, Sam, etc. Ok, now let's test our multiple hypotheses. We ask all 1000 people to flip a coin. There will probably be about 500 who flip heads. Everyone else can go home. Now we ask those 500 people to flip again, and this time about 250 will flip heads. On the third flip about 125 people flip heads, on the fourth about 63 people are left, and on the fifth flip there are about 32. These 32 people are all pretty amazing aren't they? They've all flipped five heads in a row! If we flip five more times and eliminate half the people each time on average, we will end up with 16, then 8, then 4, then 2 and finally one person left who has flipped ten heads in a row. It's Bill! Bill is a "fantabulous" flipper of coins! Or is he?

Well we really don't know, and that's the point. Bill may have won our contest out of pure chance, or he may very well be the best flipper of heads this side of the Andromeda galaxy. By the same token, we don't know if the 32-day moving average from our example above just performed well in our test by pure chance, or if there is really something special about it. But all we've done so far is to find a hypothesis, namely that the 32-day moving average strategy is profitable (or that Bill is a great coin flipper). We haven't actually tested that hypothesis yet.

So now that we understand that we haven't really discovered anything significant yet about the 32-day moving average or about Bill's ability to flip coins, the natural question to ask is what should we do next? As I mentioned above, many traders never realize that there is a next step required at all. Well, in the case of Bill you'd probably ask, "Aha, but can he flip ten heads in a row again?" In the case of the 32-day moving average, we'd want to test it again, but certainly not against the same data sample that we used to choose that hypothesis. We would choose another ten-year period and see if the strategy worked just as well. We could continue to do this experiment as many times as we wanted until our supply of new ten-year periods ran out. We refer to this as "out of sample testing", and it's the way to avoid this pitfall. There are various methods of such testing, one of which is "cross validation", but we won't get into that much detail here.

Overfitting

Overfitting is really a kind of reversal of the above problem. In the multiple hypothesis example above, we looked at many simple hypotheses and picked the one that performed best in the past. In overfitting we first look at the past and then construct a single complex hypothesis that fits well with what happened. For example if I look at the USD/JPY rate over the past 10 days, I might see that the daily closes did this:

up, up, down, up, up, up, down, down, down, up.

Got it? See the pattern? Yeah, neither do I actually. But if I wanted to use this data to suggest a hypothesis, I might come up with...

My amazing hypothesis:

If the closing price goes up twice in a row then down for one day, or if it goes down for three days in a row we should buy,

but if the closing price goes up three days in a row we should sell,

but if it goes up three days in a row and then down three days in a row we should buy.

Huh? Sounds like a whacky hypothesis right? But if we had used this strategy over the past 10 days, we would have been right on every single trade we made! The "overfitter" uses backtesting and data mining differently than the "multiple hypothesis makers" do. The "overfitter" doesn't come up with 400 different strategies to backtest. No way! The "overfitter" uses data mining tools to figure out just one strategy, no matter how complex, that would have had the best performance over the backtesting period. Will it work in the future?

Not likely, but we could always keep tweaking the model and testing the strategy in different samples (out of sample testing again) to see if our performance improves. When we stop getting performance improvements and the only thing that's rising is the complexity of our model, then we know we've crossed the line into overfitting.

Conclusion

So in summary, we've seen that data mining is a way to use our historical price data to suggest a workable trading strategy, but that we have to be aware of the pitfalls of the multiple hypothesis problem and overfitting. The way to make sure that we don't fall prey to these pitfalls is to backtest our strategy using a different dataset than the one we used during our data mining exploration. We commonly refer to this as "out of sample testing".

Scott Percival

October 2006

Scott Percival is the Director of Research for the FOREX Statistical Research Center at Market-geeks.com, a site which is devoted to using mathematics and the scientific method to study the behavior of prices in the FOREX market. Mr. Percival has a degree in Civil Engineering from Northeastern University, and has worked as a Registered Representative and trading instructor at Fidelity Investments. He is currently working toward the goal of becoming a full time FOREX trader.




Source: http://ezinearticles.com/?Backtesting-and-Data-Mining&id=341468

The Need for Specialised Data Mining Techniques for Web 2.0

Web 2.0 is not exactly a new version of the Web, but rather a way to describe a new generation of interactive websites centred on the user. These are websites that offer

interactive information sharing, as well as collaboration - a case in point being wikis and blogs - and is now expanding to other areas as well. These new sites are the result of new technologies and new ideas and are on the cutting edge of Web development. Due to their novelty, they create a rather interesting challenge for data mining.

Data mining is simply a process of finding patterns in masses of data. There is such a vast plethora of information out there on the Web that it is necessary to use data mining tools to make sense of it. Traditional data mining techniques are not very effective when used on these new Web 2.0 sites because the user interface is so varied. Since Web 2.0 sites are created largely by user-supplied content, there is even more data to mine for valuable information. Having said that, the additional freedom in the format ensures that it is much more difficult to sift through the content to find what is usable.The data available is very valuable, so where there is a new platform, there must be new techniques developed for mining the data. The trick is that the data mining methods must themselves be flexible as the sites they are targeting are flexible. In the initial days of the World Wide Web, which was referred to as Web 1.0, data mining programs knew where to look for the desired information. Web 2.0 sites lack structure, meaning there is no single spot for the mining program to target. It must be able to scan and sift through all of the user-generated content to find what is needed. The upside is that there is a lot more data out there, which means more and more accurate results if the data can be properly utilized. The downside is that with all that data, if the selection criteria are not specific enough, the results will be meaningless. Too much of a good thing is definitely a bad thing. Wikis and blogs have been around long enough now that enough research has been carried out to understand them better. This research can now be used, in turn, to devise the best possible data mining methods. New algorithms are being developed that will allow data mining applications to analyse this data and return useful. Another problem is that there are many cul-de-sacs on the internet now, where groups of people share information freely, but only behind walls/barriers that keep it away from the genera results.

The main challenge in developing these algorithms does not lie with finding the data, because there is too much of it. The challenge is filtering out irrelevant data to get to the meaningful one. At this point none of the techniques are perfected. This makes Web 2.0 data mining an exciting and frustrating field, and yet another challenge in the never ending series of technological hurdles that have stemmed from the internet. There are numerous problems to overcome. One is the inability to rely on keywords, which used to be the best method to search. This does not allow for an understanding of context or sentiment associated with the keywords which can drastically vary the meaning of the keyword population. Social networking sites are a good example of this, where you can share information with everyone you know, but it is more difficult for that information to proliferate outside of those circles. This is good in terms of protecting privacy, but it does not add to the collective knowledge base and it can lead to a skewed understanding of public sentiment based on what social structures you have entry into. Attempts to use artificial intelligence have been less than successful because it is not adequately focused in its methodology. Data mining depends on the collection of data and sorting the results to create reports on the individual metrics that are the focus of interest. The size of the data sets are simply too large for traditional computational techniques to be able to tackle them. That is why a new answer needs to be found. Data mining is an important necessity for managing the backhaul of the internet. As Web 2.0 grows exponentially, it is increasingly hard to keep track of everything that is out there and summarize and synthesize it in a useful way. Data mining is necessary for companies to be able to really understand what customers like and want so that they can create products to meet these needs. In the increasingly aggressive global market, companies also need the reports resulting from data mining to remain competitive. If they are unable to keep track of the market and stay abreast of popular trends, they will not survive. The solution has to come from open source with options to scale databases depending on needs. There are companies that are now working on these ideas and are sharing the results with others to further improve them. So, just as open source and collective information sharing of Web 2.0 created these new data mining challenges, it will be the collective effort that solves the problems as well.

It is important to view this as a process of constant improvement, not one where an answer will be absolute for all time. Since its advent, the internet has changed quite significantly as well as the way users interact with it. Data mining will always be a critical part of corporate internet usage and its methods will continue to evolve just as the Web and its content does.

There is a huge incentive for creating better data mining solutions to tackle the complexities of Web 2.0. For this reason, several companies exist just for the purpose of analysing and creating solutions to the data mining problem. They find eager buyers for their applications in companies which are desperate for information on markets and potential customers. The companies in question do not simply want more data, they want better data. This requires a system that can classify and group data, and then make sense of the results.While the data mining process is expensive to start with, it is well worth for a retail company because it provides insight into the market and thus enables quick decisions.The speed at which a company which has insightful information on the marketplace can react to changes, gives it a huge advantage over the competition. Not only can the company react quickly, it is likely to steer itself in the right direction if its information is based on updated data.Advanced data mining will allow companies not only to make snap decisions, but also to plan long range strategies, based on the direction the marketplace is heading. Data mining brings the company closer to its customers. The real winners here, are the companies that have now discovered that they can make a living by improving the existing data mining techniques. They have filled a niche that was only created recently, which no one could have foreseen and have done quite a, good job at it.



Source: http://ezinearticles.com/?The-Need-for-Specialised-Data-Mining-Techniques-for-Web-2.0&id=7412130

Monday, 16 September 2013

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Todd Wilson is the owner of screen-scraper.com (http://www.screen-scraper.com/), a company which specializes in data extraction from web pages. While not scraping screens Todd is hard at work finishing up a doctoral degree in Instructional Psychology and Technology.




Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Sunday, 15 September 2013

Data Extraction Services For Better Outputs in Your Business

Data Extraction can be defined as the process of retrieving data from an unstructured source in order to process it further or store it. It is very useful for large organizations who deal with large amount of data on a daily basis that need to be processed into meaningful information and stored for later use. The data extraction is a systematic way to extract and structure data from scattered and semi-structured electronic documents, as found on the web and in various data warehouses.

In today's highly competitive business world, vital business information such as customer statistics, competitor's operational figures and inter-company sales figures play an important role in making strategic decisions. By signing on this service provider, you will be get access to critivcal data from various sources like websites, databases, images and documents.

It can help you take strategic business decisions that can shape your business' goals. Whether you need customer information, nuggets into your competitor's operations and figure out your organization's performance, it is highly critical to have data at your fingertips as and when you want it. Your company may be crippled with tons of data and it may prove a headache to control and convert the data into useful information. Data extraction services enable you get data quickly and in the right format.

Few areas where Data Extraction can help you are:

    Capturing financial data
    Generating better sales leads
    Conducting market research, survey and analysis
    Conducting product research and analysis
    Track, extract and harvest product pricing data
    Searching for specific job postings
    Duplicating an online database
    Acquiring real estate data
    Processing auction information
    Searching online newspapers for latest pricing information
    Extracting and summarize news stories from online news sources

Outsourcing companies provide custom made data extraction services to the client's requirements. The different types of data extraction services;

    Web extraction
    Database extraction

Outsourcing is the beneficial option for large organizations seeking to manage large information. Outsourcing this services helps businesses in managing their data effectively, which in turn enables business to experience an increase in profits. By outsourcing, you can certainly increase your competitive edge and save costs too!



Source: http://ezinearticles.com/?Data-Extraction-Services-For-Better-Outputs-in-Your-Business&id=2760257

Friday, 13 September 2013

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.




Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Wednesday, 11 September 2013

Data Extraction - A Guideline to Use Scrapping Tools Effectively

So many people around the world do not have much knowledge about these scrapping tools. In their views, mining means extracting resources from the earth. In these internet technology days, the new mined resource is data. There are so many data mining software tools are available in the internet to extract specific data from the web. Every company in the world has been dealing with tons of data, managing and converting this data into a useful form is a real hectic work for them. If this right information is not available at the right time a company will lose valuable time to making strategic decisions on this accurate information.

This type of situation will break opportunities in the present competitive market. However, in these situations, the data extraction and data mining tools will help you to take the strategic decisions in right time to reach your goals in this competitive business. There are so many advantages with these tools that you can store customer information in a sequential manner, you can know the operations of your competitors, and also you can figure out your company performance. And it is a critical job to every company to have this information at fingertips when they need this information.

To survive in this competitive business world, this data extraction and data mining are critical in operations of the company. There is a powerful tool called Website scraper used in online digital mining. With this toll, you can filter the data in internet and retrieves the information for specific needs. This scrapping tool is used in various fields and types are numerous. Research, surveillance, and the harvesting of direct marketing leads is just a few ways the website scraper assists professionals in the workplace.

Screen scrapping tool is another tool which useful to extract the data from the web. This is much helpful when you work on the internet to mine data to your local hard disks. It provides a graphical interface allowing you to designate Universal Resource Locator, data elements to be extracted, and scripting logic to traverse pages and work with mined data. You can use this tool as periodical intervals. By using this tool, you can download the database in internet to you spread sheets. The important one in scrapping tools is Data mining software, it will extract the large amount of information from the web, and it will compare that date into a useful format. This tool is used in various sectors of business, especially, for those who are creating leads, budget establishing seeing the competitors charges and analysis the trends in online. With this tool, the information is gathered and immediately uses for your business needs.

Another best scrapping tool is e mailing scrapping tool, this tool crawls the public email addresses from various web sites. You can easily from a large mailing list with this tool. You can use these mailing lists to promote your product through online and proposals sending an offer for related business and many more to do. With this toll, you can find the targeted customers towards your product or potential business parents. This will allows you to expand your business in the online market.

There are so many well established and esteemed organizations are providing these features free of cost as the trial offer to customers. If you want permanent services, you need to pay nominal fees. You can download these services from their valuable web sites also.



Source: http://ezinearticles.com/?Data-Extraction---A-Guideline-to-Use-Scrapping-Tools-Effectively&id=3600918

Friday, 6 September 2013

Why Outsourcing Data Mining Services?

Are huge volumes of raw data waiting to be converted into information that you can use? Your organization's hunt for valuable information ends with valuable data mining, which can help to bring more accuracy and clarity in decision making process.

Nowadays world is information hungry and with Internet offering flexible communication, there is remarkable flow of data. It is significant to make the data available in a readily workable format where it can be of great help to your business. Then filtered data is of considerable use to the organization and efficient this services to increase profits, smooth work flow and ameliorating overall risks.

Data mining is a process that engages sorting through vast amounts of data and seeking out the pertinent information. Most of the instance data mining is conducted by professional, business organizations and financial analysts, although there are many growing fields that are finding the benefits of using in their business.

Data mining is helpful in every decision to make it quick and feasible. The information obtained by it is used for several applications for decision-making relating to direct marketing, e-commerce, customer relationship management, healthcare, scientific tests, telecommunications, financial services and utilities.

Data mining services include:

    Congregation data from websites into excel database
    Searching & collecting contact information from websites
    Using software to extract data from websites
    Extracting and summarizing stories from news sources
    Gathering information about competitors business

In this globalization era, handling your important data is becoming a headache for many business verticals. Then outsourcing is profitable option for your business. Since all projects are customized to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure can be realized.

Advantages of Outsourcing Data Mining Services:

    Skilled and qualified technical staff who are proficient in English
    Improved technology scalability
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

Outsourcing will help you to focus on your core business operations and thus improve overall productivity. So data mining outsourcing is become wise choice for business. Outsourcing of this services helps businesses to manage their data effectively, which in turn enable them to achieve higher profits.



Source: http://ezinearticles.com/?Why-Outsourcing-Data-Mining-Services?&id=3066061

Thursday, 5 September 2013

An Easy Way For Data Extraction

There are so many data scraping tools are available in internet. With these tools you can you download large amount of data without any stress. From the past decade, the internet revolution has made the entire world as an information center. You can obtain any type of information from the internet. However, if you want any particular information on one task, you need search more websites. If you are interested in download all the information from the websites, you need to copy the information and pate in your documents. It seems a little bit hectic work for everyone. With these scraping tools, you can save your time, money and it reduces manual work.

The Web data extraction tool will extract the data from the HTML pages of the different websites and compares the data. Every day, there are so many websites are hosting in internet. It is not possible to see all the websites in a single day. With these data mining tool, you are able to view all the web pages in internet. If you are using a wide range of applications, these scraping tools are very much useful to you.

The data extraction software tool is used to compare the structured data in internet. There are so many search engines in internet will help you to find a website on a particular issue. The data in different sites is appears in different styles. This scraping expert will help you to compare the date in different site and structures the data for records.

And the web crawler software tool is used to index the web pages in the internet; it will move the data from internet to your hard disk. With this work, you can browse the internet much faster when connected. And the important use of this tool is if you are trying to download the data from internet in off peak hours. It will take a lot of time to download. However, with this tool you can download any data from internet at fast rate.There is another tool for business person is called email extractor. With this toll, you can easily target the customers email addresses. You can send advertisement for your product to the targeted customers at any time. This the best tool to find the database of the customers.

However, there are some more scraping tolls are available in internet. And also some of esteemed websites are providing the information about these tools. You download these tools by paying a nominal amount.



Source: http://ezinearticles.com/?An-Easy-Way-For-Data-Extraction&id=3517104

Wednesday, 4 September 2013

Data Extraction Services - A Helpful Hand For Large Organization

The data extraction is the way to extract and to structure data from not structured and semi-structured electronic documents, as found on the web and in various data warehouses. Data extraction is extremely useful for the huge organizations which deal with considerable amounts of data, daily, which must be transformed into significant information and be stored for the use this later on.

Your company with tons of data but it is difficult to control and convert the data into useful information. Without right information at the right time and based on half of accurate information, decision makers with a company waste time by making wrong strategic decisions. In high competing world of businesses, the essential statistics such as information customer, the operational figures of the competitor and the sales figures inter-members play a big role in the manufacture of the strategic decisions. It can help you to take strategic business decisions that can shape your business' goals..

Outsourcing companies provide custom made services to the client's requirements. A few of the areas where it can be used to generate better sales leads, extract and harvest product pricing data, capture financial data, acquire real estate data, conduct market research , survey and analysis, conduct product research and analysis and duplicate an online database..

The different types of Data Extraction Services:

    Database Extraction:
    Reorganized data from multiple databases such as statistics about competitor's products, pricing and latest offers and customer opinion and reviews can be extracted and stored as per the requirement of company.
    Web Data Extraction:
    Web Data Extraction is also known as data Extraction which is usually referred to the practice of extract or reading text data from a targeted website.

Businesses have now realized about the huge benefits they can get by outsourcing their services. Then outsourcing is profitable option for business. Since all projects are custom based to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure are among the many advantages that outsourcing brings.

Advantages of Outsourcing Data Extraction Services:

    Improved technology scalability
    Skilled and qualified technical staff who are proficient in English
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

By outsourcing, you can definitely increase your competitive advantages. Outsourcing of services helps businesses to manage their data effectively, which in turn would enable them to experience an increase in profits.



Source: http://ezinearticles.com/?Data-Extraction-Services---A-Helpful-Hand-For-Large-Organization&id=2477589

Benefits and Advantages of Data Mining

One definition given to data mining is the categorization of information according to the needs and preferences of the user. In data mining, you try to find patterns within a big volume of available data. It is a potent and popular technology for different industries. Data mining can even be compared to the difficult task of looking for a needle in the haystack. The greatest challenge is not obtaining information but uncovering connections and information that have not been known in the past.

Yet, data mining tools can only be utilized efficiently provided you possess huge amounts of information in repository. Almost all of corporate organizations already hold this information. One good example is the list of potential clients for marketing purposes. These are the consumers to whom you can sell commodities or services. You have greater chances of generating more revenues if you know these potential customers in the inventory and determine consumption behavior. There are benefits that you need to know regarding data mining.

    Data mining is not only for entrepreneurs. The process is cut out for analysis as well and can be employed by government agencies, non-profit organizations, and basketball teams. In short, the data must be made more specific and refined according to the needs of the group concerned.

    This unique method can be used along with demographics. Data mining combined with demographics enables enterprises to pursue the advertising strategy for specific segments of customers. That form of advertising that is related directly to behavior.

    It has a flexible nature and can be used by business organizations that focus on the needs of customers. Data mining is one of the more relevant services because of the fast-paced and instant access to information together with techniques in economic processing.

However, you need to prepare ahead of time the data used for mining. It is essential to understand the principles of clustering and segmentation. These two elements play a vital part in marketing campaigns and customer interface. These components encompass the purchasing conduct of consumers over a particular duration. You will be able to separate your customers into categories based on the earnings brought to your company. It is possible to determine the income that these customers will generate and retention opportunities. Simply remember that nearly all profit-oriented entities will desire to maintain high-value and low-risk clients. The target is to ensure that these customers keep on buying for the long-term.




Source: http://ezinearticles.com/?Benefits-and-Advantages-of-Data-Mining&id=7747698

Monday, 2 September 2013

Assuring Scraping Success with Proxy Data Scraping

Have you ever heard of "Data Scraping?" Data Scraping is the process of collecting useful data that has been placed in the public domain of the internet (private areas too if conditions are met) and storing it in databases or spreadsheets for later use in various applications. Data Scraping technology is not new and many a successful businessman has made his fortune by taking advantage of data scraping technology.

Sometimes website owners may not derive much pleasure from automated harvesting of their data. Webmasters have learned to disallow web scrapers access to their websites by using tools or methods that block certain ip addresses from retrieving website content. Data scrapers are left with the choice to either target a different website, or to move the harvesting script from computer to computer using a different IP address each time and extract as much data as possible until all of the scraper's computers are eventually blocked.

Thankfully there is a modern solution to this problem. Proxy Data Scraping technology solves the problem by using proxy IP addresses. Every time your data scraping program executes an extraction from a website, the website thinks it is coming from a different IP address. To the website owner, proxy data scraping simply looks like a short period of increased traffic from all around the world. They have very limited and tedious ways of blocking such a script but more importantly -- most of the time, they simply won't know they are being scraped.

You may now be asking yourself, "Where can I get Proxy Data Scraping Technology for my project?" The "do-it-yourself" solution is, rather unfortunately, not simple at all. Setting up a proxy data scraping network takes a lot of time and requires that you either own a bunch of IP addresses and suitable servers to be used as proxies, not to mention the IT guru you need to get everything configured properly. You could consider renting proxy servers from select hosting providers, but that option tends to be quite pricey but arguably better than the alternative: dangerous and unreliable (but free) public proxy servers.

There are literally thousands of free proxy servers located around the globe that are simple enough to use. The trick however is finding them. Many sites list hundreds of servers, but locating one that is working, open, and supports the type of protocols you need can be a lesson in persistence, trial, and error. However if you do succeed in discovering a pool of working public proxies, there are still inherent dangers of using them. First off, you don't know who the server belongs to or what activities are going on elsewhere on the server. Sending sensitive requests or data through a public proxy is a bad idea. It is fairly easy for a proxy server to capture any information you send through it or that it sends back to you. If you choose the public proxy method, make sure you never send any transaction through that might compromise you or anyone else in case disreputable people are made aware of the data.

A less risky scenario for proxy data scraping is to rent a rotating proxy connection that cycles through a large number of private IP addresses. There are several of these companies available that claim to delete all web traffic logs which allows you to anonymously harvest the web with minimal threat of reprisal. Companies such as http://www.Anonymizer.com offer large scale anonymous proxy solutions, but often carry a fairly hefty setup fee to get you going.

The other advantage is that companies who own such networks can often help you design and implementation of a custom proxy data scraping program instead of trying to work with a generic scraping bot. After performing a simple Google search, I quickly found one company (www.ScrapeGoat.com) that provides anonymous proxy server access for data scraping purposes. Or, according to their website, if you want to make your life even easier, ScrapeGoat can extract the data for you and deliver it in a variety of different formats often before you could even finish configuring your off the shelf data scraping program.

Whichever path you choose for your proxy data scraping needs, don't let a few simple tricks thwart you from accessing all the wonderful information stored on the world wide web!



Source: http://ezinearticles.com/?Assuring-Scraping-Success-with-Proxy-Data-Scraping&id=248993

Sunday, 1 September 2013

Why Web Scraping Software Won't Help

How to get continuous stream of data from these websites without getting stopped? Scraping logic depends upon the HTML sent out by the web server on page requests, if anything changes in the output, its most likely going to break your scraper setup.

If you are running a website which depends upon getting continuous updated data from some websites, it can be dangerous to reply on just a software.

Some of the challenges you should think:

1. Web masters keep changing their websites to be more user friendly and look better, in turn it breaks the delicate scraper data extraction logic.

2. IP address block: If you continuously keep scraping from a website from your office, your IP is going to get blocked by the "security guards" one day.

3. Websites are increasingly using better ways to send data, Ajax, client side web service calls etc. Making it increasingly harder to scrap data off from these websites. Unless you are an expert in programing, you will not be able to get the data out.

4. Think of a situation, where your newly setup website has started flourishing and suddenly the dream data feed that you used to get stops. In today's society of abundant resources, your users will switch to a service which is still serving them fresh data.

Getting over these challenges

Let experts help you, people who have been in this business for a long time and have been serving clients day in and out. They run their own servers which are there just to do one job, extract data. IP blocking is no issue for them as they can switch servers in minutes and get the scraping exercise back on track. Try this service and you will see what I mean here.




Source: http://ezinearticles.com/?Why-Web-Scraping-Software-Wont-Help&id=4550594