Sunday, 30 November 2014

What you have to know before requesting web scraping services?

Before you request web scraping services you have to know what are your needs (what data you need, structure of it and where you can find this data).

Step 1: Define what data you need?

Data needs depending on purpose, if you want to find new customers you probably need contact data from players in your industry. Also if you want to study your competitors you need to define who are they. Only after that you can select data sources (websites feeds or other electronic sources) for this extraction.

In many cases for discovering and defining data sources are used search engines like Google, Bing, Yahoo, and others.

Step 2: Structure of data

Data structure it’s directly linked to usage purpose. In many cases data structure it’s a table where a row represents an entity and a cell of this row represents a property of this entity. In other cases Data structure is a a chart or another graphic representation builder with data extracted from a web source.

Step 3: Number of data extraction

In many cases is needed one time data extraction. In other cases when you need a regular report, are needed periodically extractions.

If you have defined all of above points you are ready to request a quote and an amount estimation from this contact form.

Source: http://thewebminer.com/blog/2013/08/

Thursday, 27 November 2014

Scraping SSL Labs Server Test Results With R

    NOTE: Qualys allows automated access to their SSL Server Test site in their T&C’s, and the R fucntion/script provided here does its best to adhere to their guidelines. However, if you launch multiple scripts at one time and catch their attention you will, no doubt, be banned.

This post will show you how to do some basic web page data scraping with R. To make it more palatable to those in the security domain, we’ll be scraping the results from Qualys’ SSL Labs SSL Test site by building an R function that will:

    fetch the contents of a URL with RCurl
    process the HTML page tags with R’s XML library
    identify the key elements from the page that need to be scraped
    organize the results into a usable R data structure

You can skip ahead to the code at the end (or in this gist) or read on for some expository that isn’t in the code’s comments.

Setting up the script and processing flow

We’ll need some assistance from three R packages to perform the scraping, processing and transformation tasks:

library(RCurl) # scraping
library(XML)   # XML (HTML) processing
library(plyr)  # data transformation

If you poke at the SSL Test site with a few different URLs, you’ll see there are three primary inputs to the GET request we’ll need to issue:

    d (the domain)
    s (the IP address to test)
    ignoreMismatch (which we’ll leave as ‘on‘)

You’ll also see that there’s often a delay between issuing a request and getting the results, so we’ll need to build in a GET+check-loop (like the javascript on the page does automagically). Finally, when the results are eventually displayed they are (at least for this example) usually either "Overall Rating" or "Assessment" and, we’ll use that status result in our tests for what to return.

We’ll account for the domain and IP address in the function parameters along with the amount of time we should pause between GET+check attempts. It’s also a good idea to provide a way to pass in any extra curl options (e.g. in the event folks are behind a proxy server and need to input that to make the requests work). We’ll define the function with some default parameters:

get_rating <- function(site="rud.is", ip="", pause=5, curl.opts=list()) {

}

This definition says that if we just call get_rating(), it will

    default to using "rud.is" as the domain (you can pick what you want in your implementation)
    not supply an IP address (which the script will then have to lookup with nsl)
    will pause 5s between GET+check attempts
    pass no extra curl options

Getting into the details

For the IP address logic, we’ll have to test if we passed in an an address string and perform a lookup if not:

# try to resolve IP if not specified; if no IP can be found, return
# a "NA" data frame

  if (ip == "") {

    tmp <- nsl(site)
    if (is.null(tmp)) {
      return(data.frame(site=site, ip=NA, Certificate=NA,
                        Protocol.Support=NA, Key.Exchange=NA,
                        Cipher.Strength=NA)) }
    ip <- tmp
  }

(don’t worry about the return(...) part yet, we’ll get there in a bit).

Once we have an IP address, we’ll need to make the call to the ssllabs.com test site and perform the check loop:

# get the contents of the URL (will be the raw HTML text)
# build the URL with sprintf

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on", site, ip), .opts=curl.opts)

# while we don't find some indication of a completed request,
# pause and try again

while(!grepl("(Overall Rating|Assessment failed)", rating.dat)) {
  Sys.sleep(pause)
  rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on", site, ip), .opts=curl.opts)
}

We can then start making some decisions based on the results:

# if the assessment failed, return a data frame of NA's

if (grepl("Assessment failed", rating.dat)) {

  return(data.frame(site=site, ip=NA, Certificate=NA,
                    Protocol.Support=NA, Key.Exchange=NA,
                    Cipher.Strength=NA))
}

# otherwise, parse the resultant HTML

x <- htmlTreeParse(rating.dat, useInternalNodes = TRUE)

Unfortunately, the results are not “consistent”. While there are plenty of uniquely identifiable <div>s, there are enough differences between runs that we have to be a bit generic in our selection of data elements to extract. I’ll leave the view-source: of a result as an exercise to the reader. For this example, we’ll focus on extracting:

        the overall rating (A-F)
        the “Certificate” score
        the “Protocol Support” score
        the “Key Exchange” score
        the “Cipher Strength” score

There are plenty of additional fields to extract, but you should be able to extrapolate and grab what you want to from the rest of the example.

Extracting the results

We’ll need to delve into XPath to extract the <div> values. We’ll use the xpathSApply function to perform this task. Since there sometimes is a <span> tag within the <div> for the rating and since the rating has a class tag to help identify which color it should be, we use a starts-with selection parameter to just get anything beginning with rating_. If it returns an R list structure, we know we have the one with a <span> element, so we re-issue the call with that extra XPath component.

rating <- xpathSApply(x,"//div[starts-with(@class,'rating_')]/text()", xmlValue)

if (class(rating) == "list") {

  rating <- xpathSApply(x,"//div[starts-with(@class,'rating_')]/span/text()", xmlValue)
}

For the four attributes (and values) we’ll be extracting, we can use the getNodeSet call which will give us all of them into a structure we can process with xpathSApply

labs <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[@class='chartLabel']")

vals <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[starts-with(@class,'chartValue')]")

# convert them to vectors

labs <- xpathSApply(labs[[1]], "//div[@class='chartLabel']/text()", xmlValue)

vals <- xpathSApply(vals[[1]], "//div[starts-with(@class,'chartValue')]/text()", xmlValue)

At this point, labs will be a vector of label names and vals will be the corresponding values. We’ll put them, the original domain and the IP address into a data frame:

# rbind will turn the vector into row elements, with each

# value being in a column

rating.result <- data.frame(site=site, ip=ip,

                            rating=rating, rbind(vals),
                            row.names=NULL)

# we use the labs vector as the column names (in the right spot)    

colnames(rating.result) <- c("site", "ip", "rating",

                              gsub(" ", "\\.", labs))

and return the result:
return(rating.result)
Finishing up

If we run the whole function on one domain we’ll get a one-row data frame back as a result. If we use ldply from the plyr package to run the get_rating function repeatedly on a vector of domains, it will combine them all into one whole data frame. For example:

sites <- c("rud.is", "stackoverflow.com", "er-ant.com")

ratings <- ldply(sites, get_rating)

ratings

##                site              ip rating Certificate Protocol.Support Key.Exchange Cipher.Strength

## 1            rud.is  184.106.97.102      B         100               70           80              90

## 2 stackoverflow.com 198.252.206.140      A         100               90           80              90

## 3        er-ant.com            <NA>   <NA>        <NA>             <NA>         <NA>            <NA>

There are many tweaks you can make to this function to extract more data and perform additional processing. If you make some of your own changes, you’re encouraged to add to the gist (link above & below) and/or drop a note in the comments.

Hopefully you’ve seen how well-suited R is for this type of operation and have been encouraged to use it in your next attempt at some site/data scraping.

library(RCurl)
library(XML)
library(plyr)

 #' get the Qualys SSL Labs rating for a domain+cert

#'

#' @param site domain to test SSL configuration of

#' @param ip address of \code{site} (will resolve it and take\cr

#' first response if not specified, but that may not always work as you expect)

#' @param hide.results ["on"|"off"] should the results show up in the SSL Labs history (default "on")

#' @param pause timeout between tries (default 5s)

#' @param curl.opts options to pass to \code{getURL} i.e. proxy setting

#' @return data frame of results

#'

  get_rating <- function(site="rud.is", ip="", hide.results="on", pause=5, curl.opts=list()) {

# try to resolve IP if not specified; if no IP can be found, return

# a "NA" data frame

if (ip == "") {

tmp <- nsl(site)

if (is.null(tmp)) { return(data.frame(site=site, ip=NA, Certificate=NA,

Protocol.Support=NA, Key.Exchange=NA, Cipher.Strength=NA)) }

ip <- tmp

}

# need to let it actually process the certificate if not already cached

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on&hideResults=%s", site, ip, hide.results), .opts=curl.opts)

while(!grepl("(Overall Rating|Assessment failed)", rating.dat)) {

Sys.sleep(pause)

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on&hideResults=%s", site, ip, hide.results), .opts=curl.opts)

}

if (grepl("Assessment failed", rating.dat)) {

return(data.frame(site=site, ip=NA, Certificate=NA,

Protocol.Support=NA, Key.Exchange=NA, Cipher.Strength=NA))

}

x <- htmlTreeParse(rating.dat, useInternalNodes = TRUE)

# sometimes there is a <span ...> tag in the <div>, which will result in an

# empty list() object being returned. we check for that and handle it

# appropriately.

rating <- xmlValue(x[["//div[starts-with(@class,'rating_')]/text()"]])

if (class(rating) == "list") {

rating <- xmlValue(x[["//div[starts-with(@class,'rating_')]/span/text()"]])

}

# extract the XML objects for the ratings labels & values

labs <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[@class='chartLabel']")

vals <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[starts-with(@class,'chartValue')]")

# convert them to vectors

labs <- xpathSApply(labs[[1]], "//div[@class='chartLabel']/text()", xmlValue)

vals <- xpathSApply(vals[[1]], "//div[starts-with(@class,'chartValue')]/text()", xmlValue)

# make them into a data frame

rating.result <- data.frame(site=site, ip=ip, rating=rating, rbind(vals), row.names=NULL)

colnames(rating.result) <- c("site", "ip", "rating", gsub(" ", "\\.", labs))

return(rating.result)

}

 sites <- c("rud.is", "stackoverflow.com", "er-ant.com")

ratings <- ldply(sites, get_rating)

ratings

## site ip rating Certificate Protocol.Support Key.Exchange Cipher.Strength

## 1 rud.is 184.106.97.102 B 100 70 80 90

## 2 stackoverflow.com 198.252.206.140 A 100 90 80 90

## 3 er-ant.com <NA> <NA> <NA> <NA> <NA> <NA>

Source: http://www.r-bloggers.com/scraping-ssl-labs-server-test-results-with-r/

Sunday, 23 November 2014

A Content Marketer's Guide to Data Scraping

As digital marketers, big data should be what we use to inform a lot of the decisions we make. Using intelligence to understand what works within your industry is absolutely crucial within content campaigns, but it blows my mind to know that so many businesses aren't focusing on it.

One reason I often hear from businesses is that they don't have the budget to invest in complex and expensive tools that can feed in reams of data to them. That said, you don't always need to invest in expensive tools to gather valuable intelligence — this is where data scraping comes in.

Just so you understand, here's a very brief overview of what data scraping is from Wikipedia:

    "Data scraping is a technique in which a computer program extracts data from human-readable output coming from another program."

Essentially, it involves crawling through a web page and gathering nuggets of information that you can use for your analysis. For example, you could search through a site like Search Engine Land and scrape the author names of each of the posts that have been published, and then you could correlate this to social share data to find who the top performing authors are on that website.

Hopefully, you can start to see how this data can be valuable. What's more, it doesn't require any coding knowledge — if you're able to follow my simple instructions, you can start gathering information that will inform your content campaigns. I've recently used this research to help me get a post published on the front page of BuzzFeed, getting viewed over 100,000 times and channeling a huge amount of traffic through to my blog.

Disclaimer: One thing that I really need to stress before you read on is the fact that scraping a website may breach its terms of service. You should ensure that this isn't the case before carrying out any scraping activities. For example, Twitter completely prohibits the scraping of information on their site. This is from their Terms of Service:

    "crawling the Services is permissible if done in accordance with the provisions of the robots.txt file, however, scraping the Services without the prior consent of Twitter is expressly prohibited"

Google similarly forbids the scraping of content from their web properties:

    Google's Terms of Service do not allow the sending of automated queries of any sort to our system without express permission in advance from Google.

So be careful, kids.
Content analysis

Mastering the basics of data scraping will open up a whole new world of possibilities for content analysis. I'd advise any content marketer (or at least a member of their team) to get clued up on this.

Before I get started on the specific examples, you'll need to ensure that you have Microsoft Excel on your computer (everyone should have Excel!) and also the SEO Tools plugin for Excel (free download here). I put together a full tutorial on using the SEO tools plugin that you may also be interested in.

Alongside this, you'll want a web crawling tool like Screaming Frog's SEO Spider or Xenu Link Sleuth (both have free options). Once you've got these set up, you'll be able to do everything that I outline below.

So here are some ways in which you can use scraping to analyse content and how this can be applied into your content marketing campaigns:

1. Finding the different authors of a blog

Analysing big publications and blogs to find who the influential authors are can give you some really valuable data. Once you have a list of all the authors on a blog, you can find out which of those have created content that has performed well on social media, had a lot of engagement within the comments and also gather extra stats around their social following, etc.

I use this information on a daily basis to build relationships with influential writers and get my content placed on top tier websites. Here's how you can do it:

Step 1: Gather a list of the URLs from the domain you're analysing using Screaming Frog's SEO Spider. Simply add the root domain into Screaming Frog's interface and hit start (if you haven't used this tool before, you can check out my tutorial here).

Once the tool has finished gathering all the URLs (this can take a little while for big websites), simply export them all to an Excel spreadsheet.

Step 2: Open up Google Chrome and navigate to one of the article pages of the domain you're analysing and find where they mention the author's name (this is usually within an author bio section or underneath the post title). Once you've found this, right-click their name and select inspect element (this will bring up the Chrome developer console).

Within the developer console, the line of code associated to the author's name that you selected will be highlighted (see the below image). All you need to do now is right-click on the highlighted line of code and press Copy XPath.

For the Search Engine Land website, the following code would be copied:

//*[@id="leftCol"]/div[2]/p/span/a

This may not make any sense to you at this stage, but bear with me and you'll see how it works.

Step 3: Go back to your spreadsheet of URLs and get rid of all the extra information that Screaming Frog gives you, leaving just the list of raw URLs – add these to the first column (column A) of your worksheet.

Step 4: In cell B2, add the following formula:

=XPathOnUrl(A2,"//*[@id='leftCol']/div[2]/p/span/a")

Just to break this formula down for you, the function XPathOnUrl allows you to use the XPath code directly within (this is with the SEO Tools plugin installed; it won't work without this). The first element of the function specifies which URL we are going to scrape. In this instance I've selected cell A2, which contains a URL from the crawl I did within Screaming Frog (alternatively, you could just type the URL, making sure that you wrap it within quotation marks).

Finally, the last part of the function is our XPath code that we gathered. One thing to note is that you have to remove the quotation marks from the code and replace them with apostrophes. In this example, I'm referring to the "leftCol" section, which I've changed to ‘leftCol' — if you don't do this, Excel won't read the formula correctly.

Once you press enter, there may be a couple of seconds delay whilst the SEO Tools plugin crawls the page, then it will return a result. It's worth mentioning that within the example I've given above, we're looking for author names on article pages, so if I try to run this on a URL that isn't an article (e.g. the homepage) I will get an error.

For those interested, the XPath code itself works by starting at the top of the code of the URL specified and following the instructions outlined to find on-page elements and return results. So, for the following code:

//*[@id='leftCol']/div[2]/p/span/a

We're telling it to look for any element (//*) that has an id of leftCol (@id='leftCol') and then go down to the second div tag after this (div[2]), followed by a p tag, a span tag and finally, an a tag (/p/span/a). The result returned should be the text within this a tag.

Don't worry if you don't understand this, but if you do, it will help you to create your own XPath. For example, if you wanted to grab the output of an a tag that has rel=author attached to it (another great way of finding page authors), then you could use some XPath that looked a little something like this:

//a[@rel='author']

As a full formula within Excel it would look something like this:

=XPathOnUrl(A2,"//a[@rel='author']")

Once you've created the formula, you can drag it down and apply it to a large number of URLs all at once. This is a huge time-saver as you'd have to manually go through each website and copy/paste each author to get the same results without scraping – I don't need to explain how long this would take.

Now that I've explained the basics, I'll show you some other ways in which scraping can be used…

2. Finding extra details around page authors

So, we've found a list of author names, which is great, but to really get some more insight into the authors we will need more data. Again, this can often be scraped from the website you're analysing.

Most blogs/publications that list the names of the article author will actually have individual author pages. Again, using Search Engine Land as an example, if you click my name at the top of this post you will be taken to a page that has more details on me, including my Twitter profile, Google+ profile and LinkedIn profile. This is the kind of data that I'd want to gather because it gives me a point of contact for the author I'm looking to get in touch with.

Here's how you can do it.

Step 1: First we need to get the author profile URLs so that we can scrape the extra details off of them. To do this, you can use the same approach to find the author's name, with just a little addition to the formula:

=XPathOnUrl(A2,"//a[@rel='author']", <strong>"href"</strong>)

The addition of the "href" part of the formula will extract the output of the href attribute of the atag. In Lehman terms, it will find the hyperlink attached to the author name and return that URL as a result.

Step 2: Now that we have the author profile page URLs, you can go on and gather the social media profiles. Instead of scraping the article URLs, we'll be using the profile URLs.

So, like last time, we need to find the XPath code to gather the Twitter, Google+ and LinkedIn links. To do this, open up Google Chrome and navigate to one of the author profile pages, right-click on the Twitter link and select Inspect Element.

Once you've done this, hover over the highlighted line of code within Chrome's developer tools, right-click and select Copy XPath.

Step 3: Finally, open up your Excel spreadsheet and add in the following formula (using the XPath that you've copied over):

=XPathOnUrl(C2,"//*[@id='leftCol']/div[2]/p/a[2]", "href")

Remember that this is the code for scraping Search Engine Land, so if you're doing this on a different website, it will almost certainly be different. One important thing to highlight here is that I've selected cell C2 here, which contains the URL of the author profile page and not just the article page. As well as this, you'll notice that I've included "href" at the end because we want the actual Twitter profile URL and not just the words ‘Twitter'.

You can now repeat this same process to get the Google+ and LinkedIn profile URLs and add it to your spreadsheet. Hopefully you're starting to see the value in this, and how it can be used to gather a lot of intelligence that can be used for all kinds of online activity, not least your SEO and social media campaigns.

3. Gathering the follower counts across social networks

Now that we have the author's social media accounts, it makes sense to get their follower counts so that they can be ranked based on influence within the spreadsheet.

Here are the final XPath formulae that you can plug straight into Excel for each network to get their follower counts. All you'll need to do is replace the text INSERT SOCIAL PROFILE URL with the cell reference to the Google+/LinkedIn URL:

Google+:

=XPathOnUrl(<strong>INSERTGOOGLEPROFILEURL</strong>,"//span[@class='BOfSxb']")

LinkedIn:

=XPathOnUrl(<strong>INSERTLINKEDINURL</strong>,"//dd[@class='overview-connections']/p/strong")

4. Scraping page titles

Once you've got a list of URLs, you're going to want to get an idea of what the content is actually about. Using this quick bit of XPath against any URL will display the title of the page:

=XPathOnUrl(A2,"//title")

To be fair, if you're using the SEO Tools plugin for Excel then you can just use the built-in feature to scrape page titles, but it's always handy to know how to do it manually!

A nice extra touch for analysis is to look at the number of words used within the page titles. To do this, use the following formula:

=CountWords(A2)

From this you can get an understanding of what the optimum title length of a post within a website is. This is really handy if you're pitching an article to a specific publication. If you make the post the best possible fit for the site and back up your decisions with historical data, you stand a much better chance of success.

Taking this a step further, you can gather the social shares for each URL using the following functions:

Twitter:

=TwitterCount(<strong>INSERTURLHERE</strong>)

Facebook:

=FacebookLikes(<strong>INSERTURLHERE</strong>)

Google+:

=GooglePlusCount(<strong>INSERTURLHERE</strong>)

Note: You can also use a tool like URL Profiler to pull in this data, which is much better for large data sets. The tool also helps you to gather large chunks of data from other social networks, link data sources like Ahrefs, Majestic SEO and Moz, which is awesome.

If you want to get even more social stats then you can use the SharedCount API, and this is how you go about doing it…

Firstly, create a new column in your Excel spreadsheet and add the following formula (where A2 is the URL of the webpage you want to gather social stats for):

=CONCATENATE("http://api.sharedcount.com/?url=",A2)

You should now have a cell that contains your webpage URL prefixed with the SharedCount API URL. This is what we will use to gather social stats. Now here's the Excel formula to use for each network (where B2 is the cell that contaiins the formula above):

StumbleUpon:

=JsonPathOnUrl(B2,"StumbleUpon")

Reddit:

=JsonPathOnUrl(B2,"Reddit")

Delicious:

=JsonPathOnUrl(B2,"Delicious")

Digg:

=JsonPathOnUrl(B2,"Diggs")

Pinterest:

=JsonPathOnUrl(B2,"Pinterest")

LinkedIn:

=JsonPathOnUrl(B2,"Linkedin")

Facebook Shares:

=JsonPathOnUrl(B2,"Facebook.share_count")

Facebook Comments:

=JsonPathOnUrl(B2,"Facebook.comment_count")

Once you have this data, you can start looking much deeper into the elements of a successful post. Here's an example of a chart that I created around a large sample of articles that I analysed within Upworthy.com.

The chart looks at the average number of social shares that an article on Upworthy receives vs the number of words within its title. This is invaluable data that can be used across a whole host of different on-page elements to get the perfect article template for the site you're pitching to.

See, big data is useful!

5. Date/time the post was published

Along with analysing the details of headlines that are working within a site, you may want to look at the optimal posting times for best results. This is something that I regularly do within my blogs to ensure that I'm getting the best possible return from the time I spend writing.

Every site is different, which makes it very difficult for an automated, one-size-fits-all tool to gather this information. Some sites will have this data within the <head> section of their webpages, but others will display it directly under the article headline. Again, Search Engine Land is a perfect example of a website doing this…

So here's how you can scrape this information from the articles on Search Engine Land:

=XPathOnUrl(<strong>INSERTARTICLEURL</strong>,"//*[@class='dateline']/text()")

Now you've got the date and time of the post. You may want to trim this down and reformat it for your data analysis, but you've got it all in Excel so that should be pretty easy.

Extra reading

Data scraping is seriously powerful, and once you've had a bit of a play around with it you'll also realise that it's not that complicated. The examples that I've given are just a starting point but once you get your creative head on, you'll soon start to see the opportunities that arise from this intelligence.

Here's some extra reading that you might find useful:

    http://findmyblogway.com/scraping-communities-with-xpath/

    http://builtvisible.com/data-entry-is-a-waste-of-time/

    http://www.seotakeaways.com/data-scraping-guide-for-seo/

    http://okdork.com/2014/04/30/the-step-by-step-guide-to-10x-growth-for-any-blog/

TL;DR

    Start using actual data to inform your content campaigns instead of going on your gut feeling.

    Gather intelligence around specific domains you want to target for content placement and create the perfect post for their audience.

    Get clued up on XPath and JSON through using the SEO Tools plugin for Excel.

    Spend more time analysing what content will get you results as opposed to what sites will give you links!

    Check the website's ToS before scraping.

Source:http://moz.com/blog/a-content-marketers-guide-to-data-scraping

Wednesday, 19 November 2014

NHL ending dry scraping of ice before overtime

TORONTO (AP) — The NHL will no longer dry scrape the ice before overtime.

Instituted this season in an effort to reduce the number of shootouts, the dry scraping will stop after Friday's games.

The general managers decided at their meeting Tuesday to make the change after the league talked to the players' union the past few days.

Beginning Saturday, ice crews around the league will again shovel the ice after regulation as they did in previous years. The GMs said the dry scrape was causing too much of a delay. Director of hockey operations Colin Campbell said the delays were lasting from more than four minutes to almost seven.

The dry scrape initially had been approved in hopes of reducing shootouts by improving scoring chances without unduly slowing play by recoating the ice.

The GMs also discussed expanded video review, including goaltender interference, and the possibility of three-on-three overtime. The American Hockey League is experimenting with the three-on-three format this season.

This annual meeting the day after the Hockey Hall of Fame induction usually doesn't produce actual changes, with the dry scrape providing an exception.

The main purpose is to set up the March meeting in Boca Raton, Florida, where these items will be further addressed.

Source:http://missoulian.com/sports/hockey/nhl-ending-dry-scraping-of-ice-before-overtime/article_3dd5473c-6102-5800-99f7-2c98be0f99ad.html

Saturday, 15 November 2014

Screenscraping from Java using jsoup – effective data gathering from websites

In a recent article I discussed screenscraping in a in hindsight fairly clumsy way (http://technology.amis.nl/blog/12786/building-java-object-graph-with-tour-de-france-results-using-screen-scraping-java-util-parser-and-assorted-facilities). While preparing for a series of articles on data visualizations, I had need of statistics regarding the Olympic Games – more specifically: the overall medal count per country during the 2008 Bejing Olympic Games. This information is readily available from dozens of websites. However, I could not find one hat offered the data in easy to process XML or CSV format – all websites had human consumers in mind.

Using screenscraping – we use a programmatic facility to consume the content that is intended to be displayed on screen to human users and subsequently process that content by extracting the required data from it. Some web-pages are easier to scrape than others – this depends on the richness of the HTML (the poorer the better for scraping), the required interactivity (JavaScript, AJAX – the less the better) and the structure used to present the data (tables, frequently despised by web developers, work rather well).

I came across a tool for screenscraping from Java, called jsoup – http://jsoup.org/. It turned out to be so incredibly easy to use – that I thouht I should share it.

Getting going with jsoup is as easy as can be:

1. download jsoup-1.6.1.jar (or whatever the latest version is) from http://jsoup.org/download

2. add this jar as a dependency in your project and/or application CLASSPATH

3. make use of jsoup in the code that does the screenscraping.

A simple example of code that uses jsoup (more examples on: http://jsoup.org/cookbook/):

One of the websites offering the overall medal count is http://www.databaseolympics.com/games/gamesyear.htm?g=26. The page looks as follows:

Image

Well, more importantly, the page looks like this:

Image

This means in terms of screenscraping: I will find the medal count for each country inside a TABLE element with styleclass pt8. Each country has a TR element. Only the first TR element does not represent a country score, as it is the table header. The first TD element in the TR represents the country. The name of the country can be retrieved as the text content from the A element in the TD. The next TD elements contain the numbers of medals in Gold, Silver, Bronze and Total.

The corresponding Java code with jsoup boils down to:

public static void main(String[] args) throws IOException, SQLException, InterruptedException {

        Document doc = Jsoup.connect(OlympicMedalMirrorProcessor.baseUrl + "?g=26").get();
        String title = doc.title();
        System.out.println(title);
        Element table = doc.select("table.pt8").get(0);
        Elements trs = table.select("tr");
        Iterator trIter = trs.iterator();
        boolean firstRow = true;
        while (trIter.hasNext()) {


            Element tr = (Element)trIter.next();
            if (firstRow) {
                firstRow = false;
                continue;
            }
            Elements tds = tr.select("td");
            Iterator tdIter = tds.iterator();
            int tdCount = 1;
            String country = null;
            Integer gold = null;
            Integer silver = null;
            Integer bronze = null;
            Integer total = null;
            // process new line
            while (tdIter.hasNext()) {

                Element td = (Element)tdIter.next();
                switch (tdCount++) {
                case 1:
                    country = td.select("a").text();
                    break;
                case 2:
                    gold = Integer.parseInt(td.text());
                    break;
                case 3:
                    silver = Integer.parseInt(td.text());
                    break;
                case 4:
                    bronze = Integer.parseInt(td.text());
                    break;
                case 5:
                    total = Integer.parseInt(td.text());
                    break;
                }

            }
            System.out.println(country + ": gold " + gold + " silver " + silver + " bronze " + bronze + " total " +
                               total);
        } //table rows

Source:http://technology.amis.nl/2011/08/03/screenscraping-from-java-using-jsoup-effective-data-gathering-from-websites/

Thursday, 13 November 2014

The PromptCloud Advantage- Web Scraping with an Edge

The global market is now more aware of its data scraping needs. And so with the demand, the list of suppliers has grown too. This post is dedicated to bringing out the PromptCloud Advantage among such providers.

PromptCloud-Winning-The Race

1. The know-how- Crawling the web, as mundane as it may sound, is a fairly complex task. No one is to be blamed for overlooking the complexity as these things surface only after you’ve tried it yourself and delved into the nitty-gritty. The design decisions you take sit at the core of what you build and eventually monetize. And the long-term effects of such architectural choices are as pleasing if you’ve done it right as disturbing they might turn out if you’re not far-sighted.

Although the expertise of building the tech stack for such large-scale data acquisition, distributing your clusters (and putting thoughts into their geographical locations), maintaining queues, databases and backups, does come from ‘been there done that’, we have been lucky to have the tech advantage imbibed into us since inception. Not that we got it right the first time, but our systems have evolved with technologies, improving each day. Now that we have been there in this business for the last 56 months, it does feel like a long journey for our stack and yes, we do know better :)

2. SLAs- SLAs are what bolsters the data itself. PromptCloud’s key SLAs are scale and quality; while not compromising the data coverage or the politeness policies on your sources. Since we perform focused crawls, there’s no dilution of data and you can consume it all or ask us to index it in order to search using logical combinations in queries. For your reference, here’s a list of all SLAs to visit while picking your data service provider.

changing_place_changing_time_changing_thouts_changing_future.

3. The Experience- There are many scraping tools and crawling services in the market which might just serve the need. What PromptCloud provides is a data acquisition experience; and we go as many number of extra miles as you’d like us to go for it. By leveraging our DaaS platform, we make sure you get what you need from the time you start your research for a data provider through importing the data feeds into your database. We hear your requirements in detail, make sure we’ve got it right by sharing samples and going multiple iterations of reprocessing the data to match your needs while you battle internally on freezing your requirements. But what’s more magical is the way all these feeds get delivered to you, at the intervals you requested; programatically.

It might be evident for the SLAs and the know-how fusing to provide the experience, but it’s that additional human touch that actually aids in sustaining it. We make sure you’re at peace while our systems handle the roadblocks and sort out the messiness on the web.

Source:https://www.promptcloud.com/blog/the-promptcloud-advantage-web-scraping/

Monday, 10 November 2014

Example of Scraping with Selenium WebDriver in C#

In this article I will show you how it is easy to scrape a web site using Selenium WebDriver. I will guide you through a sample project which is written in C# and uses WebDriver in conjunction with the Chrome browser to login on the testing page and scrape the text from the private area of the website.

Downloading the WebDriver

First of all we need to get the latest version of Selenium Client & WebDriver Language Bindings and the Chrome Driver. Of course, you can download WebDriver bindings for any language (Java, C#, Python, Ruby), but within the scope of this sample project I will use the C# binding only. In the same manner, you can use any browser driver, but here I will use Chrome.

After downloading the libraries and the browser driver we need to include them in our Visual

Studio solution:

VS Solution

Creating the scraping program

In order to use the WebDriver in our program we need to add its namespaces:

using OpenQA.Selenium;
using OpenQA.Selenium.Chrome;
using OpenQA.Selenium.Support.UI;


Then, in the main function, we need to initialize the Chrome Driver:

using (var driver = new ChromeDriver())

{

 This piece of code searches for the chromedriver.exe file. If this file is located in a directory different from the directory where our program is executed, then we need to specify explicitly its path in the ChromeDriver constructor.

When an instance of ChromeDriver is created, a new Chrome browser will be started. Now we can control this browser via the driver variable. Let’s navigate to the target URL first:

driver.Navigate().GoToUrl("http://testing-ground.scraping.pro/login");

Then we can find the web page elements needed for us to login in the private area of the website:

var userNameField = driver.FindElementById("usr");
var userPasswordField = driver.FindElementById("pwd");
var loginButton = driver.FindElementByXPath("//input[@value='Login']");

Here we search for user name and password fields and the login button and put them into the corresponding variables. After we have found them, we can type in the user name and the password  and press the login button:

userNameField.SendKeys("admin");
userPasswordField.SendKeys("12345");
loginButton.Click();


At this point the new page will be loaded into the browser, and after it’s done we can scrape the text we need and save it into the file:

var result = driver.FindElementByXPath("//div[@id='case_login']/h3").Text;

File.WriteAllText("result.txt", result);

That’s it! At the end, I’d like to give you a bonus – saving a screenshot of the current page into a file:

driver.GetScreenshot().SaveAsFile(@"screen.png", ImageFormat.Png);

The complete program listing

using System.IO;
using System.Text;
using OpenQA.Selenium;
using OpenQA.Selenium.Chrome;
using OpenQA.Selenium.Support.UI;


namespace WebDriverTest
{
    class Program
    {
        static void Main(string[] args)
        {
            // Initialize the Chrome Driver
            using (var driver = new ChromeDriver())
            {
                // Go to the home page
                driver.Navigate().GoToUrl("http://testing-ground.scraping.pro/login");

                // Get the page elements
                var userNameField = driver.FindElementById("usr");
                var userPasswordField = driver.FindElementById("pwd");
                var loginButton = driver.FindElementByXPath("//input[@value='Login']");

                // Type user name and password
                userNameField.SendKeys("admin");
                userPasswordField.SendKeys("12345");

                // and click the login button
                loginButton.Click();

                // Extract the text and save it into result.txt
                var result = driver.FindElementByXPath("//div[@id='case_login']/h3").Text;
                File.WriteAllText("result.txt", result);

                // Take a screenshot and save it into screen.png
                driver.GetScreenshot().SaveAsFile(@"screen.png", ImageFormat.Png);
            }
        }
    }
}

Also you can download a ready project here.

Conclusion

I hope you are impressed with how easy it is to scrape web pages using the WebDriver. You can naturally press keys and click buttons as you would in working with the browser. You don’t even need to understand what kind of HTTP requests are sent and what cookies are stored; the browser does all this for you. This makes the WebDriver a wonderful tool in the hands of a web scraping specialist.

Source:http://scraping.pro/example-of-scraping-with-selenium-webdriver-in-csharp/

Wednesday, 5 November 2014

Application of Web Data Mining in CRM

The process of improvising the customer relations and interactions and making them more amicable may be termed as Customer relationship management (CRM). Since web data mining is used in the utilization of the various modeling and data analysis methods in detecting given patterns and relationships in the data, it can be used as an effective tool in CRM. By the effectively using web data mining you are able to understand what your customers what.

It is important to note that web data mining can be used effectively in searching for the right and potential customers to be offered the right products at the right time. The result of this in any business is the increase in the revenue generated. This is made possible as you are able to respond to each customer in an effective and efficient way. The method further utilizes very few resources and can be therefore termed as an economical method.

In the next paragraphs we discuss the basic process of customer relationship management and its integration with web data mining service. The following are the basic process that should be used in understanding what your customers need, sending them the right offers and products, and reducing the resources used in managing your customers.

Defining the business objective. Web data mining can be used to define and inform your customers your business objective. By doing research you can be able to determine whether your business objective is communicated well to your customers and clients. Does your business objective take interest in the customers? Your business goal must be clearly outlined in your business CRM. By having a more precise and defined goal is the possible way of ensuring success in the customer relationship management.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/application-web-data-mining-crm/