Friday, 3 July 2015

Scraping data from a list of web pages using Google Docs

Quite often when you’re looking for data as part of a story, that data will not be on a single page, but on a series of pages. To manually copy the data from each one – or even scrape the data individually – would take time. Here I explain a way to use Google Docs to grab the data for you.

Some basic principles

Although Google Docs is a pretty clumsy tool to use to scrape webpages, the method used is much the same as if you were writing a scraper in a programming language like Python or Ruby. For that reason, I think this is a good quick way to introduce the basics of certain types of scrapers.

Here’s how it works:

Firstly, you need a list of links to the pages containing data.

Quite often that list might be on a webpage which links to them all, but if not you should look at whether the links have any common structure, for example “http://www.country.com/data/australia” or “http://www.country.com/data/country2″. If it does, then you can generate a list by filling in the part of the URL that changes each time (in this case, the country name or number), assuming you have a list to fill it from (i.e. a list of countries, codes or simple addition).

Second, you need the destination pages to have some consistent structure to them. In other words, they should look the same (although looking the same doesn’t mean they have the same structure – more on this below).

The scraper then cycles through each link in your list, grabs particular bits of data from each linked page (because it is always in the same place), and saves them all in one place.

Scraping with Google Docs using =importXML – a case study

If you’ve not used =importXML before it’s worth catching up on my previous 2 posts How to scrape webpages and ask questions with Google Docs and =importXML and Asking questions of a webpage – and finding out when those answers change.

This takes things a little bit further.

In this case I’m going to scrape some data for a story about local history – the data for which is helpfully published by the Durham Mining Museum. Their homepage has a list of local mining disasters, with the date and cause of the disaster, the name and county of the colliery, the number of deaths, and links to the names and to a page about each colliery.

However, there is not enough geographical information here to map the data. That, instead, is provided on each colliery’s individual page.

So we need to go through this list of webpages, grab the location information, and pull it all together into a single list.

Finding the structure in the HTML

To do this we need to isolate which part of the homepage contains the list. If you right-click on the page to ‘view source’ and search for ‘Haig’ (the first colliery listed) we can see it’s in a table that has a beginning tag like so: <table border=0 align=center style=”font-size:10pt”>

We can use =importXML to grab the contents of the table like so:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]“)

But we only want the links, so how do we grab just those instead of the whole table contents?

The answer is to add more detail to our request. If we look at the HTML that contains the link, it looks like this:

<td valign=top><a href=”http://www.dmm.org.uk/colliery/h029.htm“>Haig&nbsp;Pit</a></td>

So it’s within a <td> tag – but all the data in this table is, not surprisingly, contained within <td> tags. The key is to identify which <td> tag we want – and in this case, it’s always the fourth one in each row.

So we can add “//td[4]” (‘look for the fourth <td> tag’) to our function like so:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]//td[4]“)

Now we should have a list of the collieries – but we want the actual URL of the page that is linked to with that text. That is contained within the value of the href attribute – or, put in plain language: it comes after the bit that says href=”.

So we just need to add one more bit to our function: “//@href”:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]//td[4]//@href”)

So, reading from the far right inwards, this is what it says: “Grab the value of href, within the fourth <td> tag on every row, of the table that has a style value of font-size:10pt”

Note: if there was only one link in every row, we wouldn’t need to include //td[4] to specify the link we needed.

Scraping data from each link in a list

Now we have a list – but we still need to scrape some information from each link in that list

Firstly, we need to identify the location of information that we need on the linked pages. Taking the first page, view source and search for ‘Sheet 89′, which are the first two words of the ‘Map Ref’ line.

The HTML code around that information looks like this:

<td valign=top>(Sheet 89) NX965176, 54° 32' 35" N, 3° 36' 0" W</td>

Looking a little further up, the table that contains this cell uses HTML like this:

<table border=0 width=”95%”>

So if we needed to scrape this information, we would write a function like this:

=importXML(“http://www.dmm.org.uk/colliery/h029.htm”, “//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]“)

…And we’d have to write it for every URL.

But because we have a list of URLs, we can do this much quicker by using cell references instead of the full URL.

So. Let’s assume that your formula was in cell C2 (as it is in this example), and the results have formed a column of links going from C2 down to C11. Now we can write a formula that looks at each URL in turn and performs a scrape on it.

In D2 then, we type the following:

=importXML(C2, “//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]“)

If you copy the cell all the way down the column, it will change the function so that it is performed on each neighbouring cell.

In fact, we could simplify things even further by putting the second part of the function in cell D1 – without the quotation marks – like so:

//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]

And then in D2 change the formula to this:

=ImportXML(C2,$D$1)

(The dollar signs keep the D1 reference the same even when the formula is copied down, while C2 will change in each cell)

Now it works – we have the data from each of 8 different pages. Almost.

Troubleshooting with =IF

The problem is that the structure of those pages is not as consistent as we thought: the scraper is producing extra cells of data for some, which knocks out the data that should be appearing there from other cells.

So I’ve used an IF formula to clean that up as follows:

In cell E2 I type the following:

=if(D2=””, ImportXML(C2,$D$1), D2)

Which says ‘If D2 is empty, then run the importXML formula again and put the results here, but if it’s not empty then copy the values across‘

That formula is copied down the column.

But there’s still one empty column even now, so the same formula is used again in column F:

=if(E2=””, ImportXML(C2,$D$1), E2)

A hack, but an instructive one

As I said earlier, this isn’t the best way to write a scraper, but it is a useful way to start to understand how they work, and a quick method if you don’t have huge numbers of pages to scrape. With hundreds of pages, it’s more likely you will miss problems – so watch out for inconsistent structure and data that doesn’t line up.

Source: http://onlinejournalismblog.com/2011/10/14/scraping-data-from-a-list-of-webpages-using-google-docs/

Wednesday, 24 June 2015

Data Scraping - Enjoy the Appeal of the Hand Scraped Flooring

Hand scraped flooring is appreciated for the character it brings into the home. This style of flooring relies on hand scraped planks of wood and not the precise milled boards. The irregularities in the planks provide a certain degree of charm and help to create a more unique feature in the home.

Distressed vs. Hand scraped

There are two types of flooring in the market that have an aged and unique charm with a non perfect finish. However, there is a significant difference in the process used to manufacture the planks. The more standard distresses flooring is cut on a factory production line. The grooves, scratches, dents, or other irregularities in these planks are part of the manufacturing process and achieved by rolling or pressed the wood onto a patterned surface.

The real hand scraped planks are made by craftsmen and they work on each plant individually. By using this working technique, there is complete certainty that each plank will be unique in appearance.

Scraping the planks

The hand scraping process on the highest-quality planks is completed by the trained carpenter or craftsmen who will produce a high-quality end product and take great care in their workmanship. It can benefit to ask the supplier of the flooring to see who completes the work.

Beside the well scraped lumber, there are also those planks that have been bought from the less than desirable sources. This is caused by the increased demand for this type of flooring. At the lower end of the market the unskilled workers are used and the end results aren't so impressive.

The high-quality plank has the distinctive look that feels and functions perfectly well as solid flooring, while the low-quality work can appear quite ugly and cheap.

Even though it might cost a little bit more, it benefits to source the hardwood floor dealers that rely on the skilled workers to complete the scraping process.

Buying the right lumber

Once a genuine supplier is found, it is necessary to determine the finer aspects of the wooden flooring. This hand scraped flooring is available in several hardwoods, such as oak, cherry, hickory, and walnut. Plus, it comes in many different sizes and widths. A further aspect relates to the finish with darker colored woods more effective at highlighting the character of the scraped boards. This makes the shadows and lines appear more prominent once the planks have been installed at home.

Why not visit Bellacerafloors.com for the latest collection of luxury floor materials, including the Handscraped Hardwood Flooring.

Source: http://ezinearticles.com/?Enjoy-the-Appeal-of-the-Hand-Scraped-Flooring&id=8995784

Friday, 19 June 2015

Rvest: easy web scraping with R

Rvest is new package that makes it easy to scrape (or harvest) data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces. Install it with:

install.packages("rvest")

rvest in action

To see rvest in action, imagine we’d like to scrape some information about The Lego Movie from IMDB. We start by downloading and parsing the file with html():

library(rvest)

lego_movie <- html("http://www.imdb.com/title/tt1490017/")

To extract the rating, we start with selectorgadget to figure out which css selector matches the data we want: strong span. (If you haven’t heard of selectorgadget, make sure to read vignette("selectorgadget") – it’s the easiest way to determine which selector extracts the data that you’re interested in.) We use html_node() to find the first node that matches that selector, extract its contents with html_text(), and convert it to numeric with as.numeric():

lego_movie %>%

  html_node("strong span") %>%
  html_text() %>%
  as.numeric()

#> [1] 7.9

We use a similar process to extract the cast, using html_nodes() to find all nodes that match the selector:

lego_movie %>%

  html_nodes("#titleCast .itemprop span") %>%
  html_text()

#>  [1] "Will Arnett"     "Elizabeth Banks" "Craig Berry"   

#>  [4] "Alison Brie"     "David Burrows"   "Anthony Daniels"

#>  [7] "Charlie Day"     "Amanda Farinos"  "Keith Ferguson"

#> [10] "Will Ferrell"    "Will Forte"      "Dave Franco"   

#> [13] "Morgan Freeman"  "Todd Hansen"     "Jonah Hill"

The titles and authors of recent message board postings are stored in a the third table on the page. We can use html_node() and [[ to find it, then coerce it to a data frame with html_table():

lego_movie %>%

  html_nodes("table") %>%
  .[[3]] %>%
  html_table()

#>                                              X 1            NA

#> 1 this movie is very very deep and philosophical   mrdoctor524

#> 2 This got an 8.0 and Wizard of Oz got an 8.1...  marr-justinm

#> 3                         Discouraging Building?       Laestig

#> 4                              LEGO - the plural      neil-476

#> 5                                 Academy Awards   browncoatjw

#> 6                    what was the funniest part? actionjacksin

Other important functions

    If you prefer, you can use xpath selectors instead of css: html_nodes(doc, xpath = "//table//td")).

    Extract the tag names with html_tag(), text with html_text(), a single attribute with html_attr() or all attributes with html_attrs().

    Detect and repair text encoding problems with guess_encoding() and repair_encoding().
    Navigate around a website as if you’re in a browser with html_session(), jump_to(), follow_link(), back(), and forward(). Extract, modify and submit forms with html_form(), set_values() and submit_form(). (This is still a work in progress, so I’d love your feedback.)

To see these functions in action, check out package demos with demo(package = "rvest").

Source: http://www.r-bloggers.com/rvest-easy-web-scraping-with-r/

Monday, 8 June 2015

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Tuesday, 2 June 2015

WordPress Titles: scraping with search url

I’ve blogged for a few years now, and I’ve used several tools along the way. zachbeauvais.com began as a Drupal site, until I worked out that it’s a bit overkill, and switched to WordPress. Recently, I’ve been toying with the idea of using a static site generator (a lá Jekyll or Hyde), or even pulling together a kind of ebook of ramblings. I also want to be able to arrange the posts based on the keywords they contain, regardless of how they’re categorised or tagged.

Whatever I wanted to do, I ended up with a single point of messiness: individual blog posts, and how they’re formatted. When I started, I seem to remember using Drupal’s truly awful WYSIWYG editor, and tweaking the HTML soup it produced. Then, when I moved over to WordPress, it pulled all the posts and metadata through via RSS, and I tweaked with the visual and text tools which are baked into the engine.

A couple years ago, I started to write in Markdown, and completely apart from the blog (thanks to full-screen writing and loud music). This gives me a local .md file, and I copy/paste into WordPress using a plugin to get rid of the visual editor entirely.

So, I wrote a scraper to return a list of blog posts containing a specific term. What I hope is that this very simple scraper is useful to others—WordPress is pretty common, after all—and to get some ideas for improving it, and handle post content. If you haven’t used ScraperWiki before, you might not know that you can see the raw scraper by clicking “view source” from the scraper’s overview page (or going here if you’re lazy).

This scraper is based on WordPress’ built-in search, which can be used by passing the search terms to a url, then scraping the resulting page:

http://zachbeauvais.com/?s=search_term&submit=Search

The scraper uses three Python libraries:

    Requests
    ScraperWiki
    lxml.html

There are two variables which can be changed to search for other terms, or using a different WordPress site:

term = "coffee"

site = "http://www.zachbeauvais.com"

The rest of the script is really simple: it creates a dictionary called “payload” containing the letter “s”, the keyword, and the instruction to search. The “s” is in there to make up the search url: /?s=coffee …

Requests then GETs the site, passing payload as url parameters, and I use Request’s .text function to render the page in html, which I then pass through lxml to the new variable “root”.

payload = {'s': str(term), 'submit': 'Search'}

r = requests.get(site, params=payload)  # This'll be the results page

html = r.text

root = lxml.html.fromstring(html)  # parsing the HTML into the var root

Now, my WordPress theme renders the titles of the retrieved posts in <h1> tags with the CSS class “entry-title”, so I loop through the html text, pulling out the links and text from all the resulting h1.entry-title items. This part of the script would need tweaking, depending on the CSS class and h-tag your theme uses.

for i in root.cssselect("h1.entry-title a"):

    link = i.cssselect("a")

    text = i.text_content()

    data = {

        'uri': link[0].attrib['href'],

        'post-title': str(text),

        'search-term': str(term)

    }

    if i is not None:

        print link

        print text

        print data

        scraperwiki.sqlite.save(unique_keys=['uri'], data=data)

    else:

        print "No results."

These return into an sqlite database via the ScraperWiki library, and I have a resulting database with the title and link to every blog post containing the keyword.

So, this could, in theory, run on any WordPress instance which uses the same search pattern URL—just change the site variable to match.

Also, you can run this again and again, changing the term to any new keyword. These will be stored in the DB with the keyword in its own column to identify what you were looking for.

See? Pretty simple scraping.

So, what I’d like next is to have a local copy of every post in a single format.

Has anyone got any ideas how I could improve this? And, has anyone used WordPress’ JSON API? It might be a logical next step to call the API to get the posts directly from the MySQL DB… but that would be a new blog post!

Source: https://scraperwiki.wordpress.com/2013/03/11/wordpress-titles-scraping-with-search-url/

Tuesday, 26 May 2015

Data Mining Services

Data Minng Services, through its data mining services can mine required data for you from any of the available sources. Over the years, we have successfully catered to wide variety of outsource data mining requirements, which specifies our competency in dealing with your data mining requirements.

Based on your requirements, we can mine data from your preferred data sources, or we will use our own reliable sources to mine the data required by you. We have been using automated as well manual data mining strategies to deliver superior data mining services.

Types of data mining services delivered by us

With an extensive variety of data mining services provided by us, you will definitely be able to find the most perfect service package to cater to your requirements. Below listed are just some of the data mining services offered by us:

•    Web data mining
•    Data extraction
•    Data capture
•    Data gathering
•    Collection of required data
•    Validation of data

Outsource data mining requirements to us, and we are sure that the data mining India unit of Hi-Tech BPO Services will be able to formulate the most appropriate and cost effective solutions to include your entire requirements.

Highlights of our data mining services:

•    Most affordable rates
•    Dedicated data mining India unit
•    Latest data mining technologies used to mine all required data
•    Data will be mined, gathered, processed and validated as per your requirements
•    Mined data can be directly included into your database

Competitive advantage of using our data mining services

To mine accurate and relevant data, some level of internet knowledge is essential. And it would also consume a lot of your valuable time. With our data mining services, we will take care of all your data mining tasks, while you look after your business and its core functions.

The affordably priced data mining services delivered by the data mining India unit will also help you to save considerable amount of your money, which you can put into more productive purposes.

Source: http://www.hitechbposervices.com/data-mining.php

Monday, 25 May 2015

Improving performance for web scraping code

2 down vote favorite

I have a website in which the code scrapes other websites for getting the accurate data. While the code works good but there a decent lag in performance because the code firsts downloads the html stream from various sites(some times 9 websites), extracts the relative part and then renders the html page.

What should I do to get an optimal performance. Should I change from shared hosting (godaddy) to my own server or it has nothing to do with my hosting and I need to make changes to my code?

1 Answer

API/CSV

Ask those websites if they provide an API, or, if you don't need an up-to-date information or the information you need doesn't change frequently, if they can sell/give you for free the data itself (for example in an CSV file). Some small websites may have fancier ways to access data, like a CSV file for the older information, and an RSS feed for the changed one.

Those websites would probably be happy to help you, since providing you with an API would reduce their own CPU and bandwidth usage by you.

Profile

Screen scrapping is really ugly when it comes to performance and scaling. You may be limited by:

    your machine performance, since parsing, sometimes an invalid HTML file, takes time,

    your network speed,

    their network speed usage, i.e. how fast can you access the pages of their website depending on the restrictions they set, like the DOS protection and the number of requests per second for screen scrappers and search engine crawlers,

    their machine performance: if they spend 500 ms. to generate every page, you can't do anything to reduce this delay.

If, despite your requests to them, those websites cannot provide any convenient way to access their data, but they give you a written consent to screen scrape their website, then profile your code to determine the bottleneck. It may be the internet speed. It may be your database queries. It may be anything.

For example, you may discover that you spend too much time finding with regular expressions the relevant information in the received HTML. In that case, you would want to stop doing it wrong and use a parser instead of regular expressions, then see how this improve the performance.

You may also find that the bottleneck is the time the remote server spends generating every page. In this case, there is nothing to do: you may have the fastest server, the fastest connection and the most optimized code, the performance will be the same.

Do things in parallel:

Remember to use parallel computing wisely and to always profile what you're doing, instead of doing premature optimization, in hope that you're smarter than the profiler.

Especially when it comes to using network, you may be very surprised. For example, you may believe that making more requests in parallel will be faster, but as Steve Gibson explains in episode 345 of Security Now, this is not always the case.

Legal aspects

Also note that screen scrapping is explicitly forbidden by the conditions of use (like on IMDB) on many websites. And if nothing is said on this subject in conditions of use, it doesn't mean that you can screen scrape those websites.

The fact that the information is available publicly on the internet doesn't give you the right to copy and reuse it this way neither.

Why? you may ask. For two reasons:

    Most websites are relying on advertisement and marketing. When people use one of those websites directly, they waste some CPU/network bandwidth of the website, but in response, they may click on an ad or buy something sold on the website. When you screen scrape, your bot waste their CPU/network bandwidth, but will never click on an ad or buy something.

    Displaying the information you screen scrapped on your website can have even worse effects. Example: in France, there are two major websites selling hardware. The first one is easy and fast to use, has a nice visual design, better SEO, and in general is very well done. The second one is a crap, but the prices are lower. If you screen scrape them and give the raw results (prices with links) to your users, they will obviously click on the lower price every time, which means that the website with pretty design will have less chances to sell the products.

    People made an effort in collecting, processing and displaying some data. Sometimes they paid to get it. Why would they enjoy seeing you pulling this data conveniently and for free?

Source: http://programmers.stackexchange.com/questions/141403/improving-performance-for-web-scraping-code/141406#141406

Friday, 22 May 2015

Scraping Data: Site-specific Extractors vs. Generic Extractors

Scraping is becoming a rather mundane job with every other organization getting its feet wet with it for their own data gathering needs. There have been enough number of crawlers built – some open-sourced and others internal to organizations for in-house utilities. Although crawling might seem like a simple technique at the onset, doing this at a large-scale is the real deal. You need to have a distributed stack set up to take care of handling huge volumes of data, to provide data in a low-latency model and also to deal with fail-overs. This still is achievable after crossing the initial tech barrier and via continuous optimizations. (P.S. Not under-estimating this part because it still needs a team of Engineers monitoring the stats and scratching their heads at times).

Social Media Scraping

Focused crawls on a predefined list of sites

However, you bump into a completely new land if your goal is to generate clean and usable data sets from these crawls i.e. “extract” data in a format that your DB can process and aid in generating insights. There are 2 ways of tackling this:

a. site-specific extractors which give desired results

b. generic extractors that result in few surprises

Assuming you still do focused crawls on a predefined list of sites, let’s go over specific scenarios when you have to pick between the two-

1. Mass-scale crawls; high-level meta data – Use generic extractors when you have a large-scale crawling requirement on a continuous basis. Large-scale would mean having to crawl sites in the range of hundreds of thousands. Since the web is a jungle and no two sites share the same template, it would be impossible to write an extractor for each. However, you have to settle in with just the document-level information from such crawls like the URL, meta keywords, blog or news titles, author, date and article content which is still enough information to be happy with if your requirement is analyzing sentiment of the data.

cb1c0_one-size

A generic extractor case

Generic extractors don’t yield accurate results and often mess up the datasets deeming it unusable. Reason being

programatically distinguishing relevant data from irrelevant datasets is a challenge. For example, how would the extractor know to skip pages that have a list of blogs and only extract the ones with the complete article. Or delineating article content from the title on a blog page is not easy either.

To summarize, below is what to expect of a generic extractor.

Pros-

•    minimal manual intervention
•    low on effort and time
•    can work on any scale

Cons-

•    Data quality compromised
•    inaccurate and incomplete datasets
•    lesser details suited only for high-level analyses
•    Suited for gathering- blogs, forums, news
•    Uses- Sentiment Analysis, Brand Monitoring, Competitor Analysis, Social Media Monitoring.

2. Low/Mid scale crawls; detailed datasets – If precise extraction is the mandate, there’s no going away from site-specific extractors. But realistically this is do-able only if your scope of work is limited i.e. few hundred sites or less. Using site-specific extractors, you could extract as many number of fields from any nook or corner of the web pages. Most of the times, most pages on a website share similar templates. If not, they can still be accommodated for using site-specific extractors.

cutlery

Designing extractor for each website

Pros-

•    High data quality
•    Better data coverage on the site

Cons-

High on effort and time

Site structures keep changing from time to time and maintaining these requires a lot of monitoring and manual intervention

Only for limited scale

Suited for gathering – any data from any domain on any site be it product specifications and price details, reviews, blogs, forums, directories, ticket inventories, etc.

Uses- Data Analytics for E-commerce, Business Intelligence, Market Research, Sentiment Analysis

Conclusion

Quite obviously you need both such extractors handy to take care of various use cases. The only way generic extractors can work for detailed datasets is if everyone employs standard data formats on the web (Read our post on standard data formats here). However, given the internet penetration to the masses and the variety of things folks like to do on the web, this is being overly futuristic.

So while site-specific extractors are going to be around for quite some time, the challenge now is to tweak the generic ones to work better. At PromptCloud, we have added ML components to make them smarter and they have been working well for us so far.

What have your challenges been? Do drop in your comments.

Source: https://www.promptcloud.com/blog/scraping-data-site-specific-extractors-vs-generic-extractors/

Tuesday, 19 May 2015

How Web Data Extraction Services Impact Startups

Starting a business has its fair share of ebbs and flows – it can be extremely challenging to get a new business off the blocks, and extremely rewarding when everything goes according to plan and yields desired results. For startups, it is important to get the nuances of running a business right from day one. To succeed in an immensely competitive space, startups need to perform above and beyond expectation right from the start, and one of the factors that can be of great help during the growing years of a startup is web data extraction.

Web data extraction through crawling and scraping, a highly efficient information gathering process, can be used in many creative ways to bring about major change in the performance graph of a startup. With effective web data extraction services acquired by outsourcing to a reputed company, the business intelligence gathered and the numerous possibilities associated with it, web crawling and extraction services can indeed become the difference maker for a startup, propelling it to the heights of success.

What drives the success of web data extraction?

When it comes to figuring out the perfect, balanced web data collection methodology for startups, there are a lot of crucial factors that come into play. Some of these are associated with the technical aspects of data collection, the approach used, the time invested, and the tools involved. Others have more to do with the processing and analysis of collected information and its judicious use in formulating strategies to take things forward.

Web Crawling Services & Web Scraping Services

With the advent of highly professional web data extraction services providers, massive amounts of structured, relevant data can be gathered and stored in real time, and in time, productively used to further the business interests of a startup. As a new business owner, it is important to have a high-level knowledge of the modern and highly functional web scraping tools available for use. This will help to utilize the prowess of competent data extraction services. This in turn can assist both in the immediate and long-term revenue generation context.

Web Data Extraction for Startups

From the very beginning, the dynamics of startups is different from that of older, well-established businesses. The time taken by the new business entity in proving its capabilities and market position needs to be used completely and effectively. Every day of growth and learning needs to add up to make a substantial difference. In this period, every plan and strategy, every execution effort, and every move needs to be properly thought out.

In such a trying situation where there is little margin for error, it pays to have accurate, reliable, relevant and actionable business intelligence. This can put you in firm control of things by allowing you to make informed business decisions and formulate targeted, relevant and growth oriented business strategies. With powerful web crawling, the volume of data gathered is varied, accurate and relevant. This data can then be studied minutely, analyzed in detail and arranged into meaningful clusters. With this weapon in your arsenal, you can take your startup a long way with smart decisions and clever implementations.

Web data extraction is a task best handled by professionals who have had rich experience in the field. Often, in-house web scraping teams are difficult to assemble and not economically viable to maintain, especially for startups. For a better solution, you can outsource your web scraping needs to a reliable web data extraction service for data collection. This way, you can get all the relevant intelligence you need without overstraining your workforce or having to employ additional personnel to handle web scraping. The company you outsource your work to can easily scrape data from multiple sources as per your requirements, and furnish you with actionable business intelligence that can help you take a lead in a competitive market.

Different Ways for Startups to use Web Data Extraction

Web scraping can be employed for many different purposes to yield different kinds of relevant data that generate actionable insights. For a startup, the important decision is how to use this powerful technique to provide valuable information that can make a difference for the future prospects of the company. Here are some interesting possibilities when it comes to impactful web data extraction for startups –

Fishing for Social Rankings and Backlinks

One of the most important business processes for a startup is competition analysis. This is one area where web data extraction can come across as an invaluable enabler. In the past, many startups have effectively used web scraping to fish for backlinks and social rankings related to competing companies.

Backlinks are important to reach a greater mass of better-targeted audiences, which can go on to increase customer base with minimal efforts. Social ranking is also an immensely important factor, as social actions on the internet are building blocks of opinion and reputation generation in this day and age. Keeping this in mind, you can use web data extraction to scrape for social rankings and backlinks related to content generated by your competing companies. After careful analysis, it is possible to arrive at concrete conclusions regarding what your competitors are doing well, and what sells the best.

This information is gold for marketers and sales personnel, and can be used to discern exactly what needs to be done to increase social buzz, generate favorable opinion, and win over customers from your competitors. You can also use this technique to develop high authority backlinks that help with SEO, targeted reach and organic traffic for your business website. For competition analysis, web scraping is a formidable tool.

Sourcing Contact Information

Another important aspect of business that startups can never ignore is good networking. Whether it is with customers, prospective customers, industry peers, partners, or competitors, excellent networking and open, transparent communication is essential for the success of your startup. For effective communication and networking, you need a large, solid list of contact information pertaining to your exact requirements.

Scraping data from multiple web sources gives you the perfect method of achieving this. With automated, fast web scraping, you can in a short time collect a wealth of important contact information that can be leveraged in many different ways. Whether it is the formation of lasting business relationships or making potential customers aware of what you have on offer, this information has the power to propel your startup to new levels of recognition.

For Ecommerce

If you sell your products and services online and want to stay on top of the competition when it comes to variety, pricing analysis, and special deals and offers, web scraping is the way to go. For many e-commerce startups, the problem of high CTR and low conversion is a stumbling block to higher bottom lines. To remedy problems like these and to ensure better sales, it is always a good idea to have a clear insight about your competition.

Future of Retail Industry

With web data extraction, you can be always aware of what competing companies are doing in terms of pricing strategies, product diversity and special customer offers. By considering that information while evaluating and cementing your own strategies, you can always ensure that you provide better value and range of products and services than your competitors, and therefore stay ahead of the competition.

For Marketing, Brand Promotion and Advertisement

For startups, the first wave of promotion and marketing is the one that holds the key to your long-term business success. It is during this phase that the first and most important public perception of your company is formed, and the rudiments of public opinion start taking shape. For this reason, it is crucial to be on point with your marketing and promotion during the early, formative years of your business.

To achieve this, you need a clear, in-depth understanding of your target audience. You need to categorize your target audience on the basis of many factors like age, gender, demographics, income groups and tastes and preferences. Such detailed understanding can only be possible when you have a large wealth of social data pertaining to your target audience. There is no better way of achieving this than by web data extraction.

Love your brand

With the help of data extraction services, you can gather large chunks of relevant data regarding your target audience which can help you accurately evaluate the potential of each prospective customers as a possible addition to your business family. To ensure that you have a steady, early wave of customers to take your business off the blocks at a rapid pace, you need to devise marketing campaigns, promotional strategies and advertisements in accordance with the customer knowledge you drive through your web scraping efforts. This is a foolproof strategy to have marketing and promotional plans in place that achieve goals, bring in new business and provide your company with enough initial momentum to carry it through the later years of success.

To conclude, web data extraction can be a veritable tool in the hands of a startup. With the proper use and leveraging of this technique, your startup can gather the required business intelligence to shine in a competitive market and become a favorite with the customer base. Working with the right web data extraction company can be one of the most important business decisions you make as a startup owner.

Source: https://www.promptcloud.com/blog/web-data-extraction-services-for-startups/

Sunday, 17 May 2015

What is Blog Scraping Service?

Blog scraping is the one of the best service to increase the traffic of the site by commenting about blogs or writing review about blogs in SEO field. Most of the Blogs will allow their reader to review or write their own comments or suggestion or ideas or thoughts in the blogs.

Nowadays in the internet world we can find the number of blogs and sites related to various topics or various products. Main concept of this service is increase traffic of website by commenting others blogs. This is very simple and easiest method. But the main difficultly we face here is getting approval from moderator of the site which may take more time or maybe we won’t get the approval.

Hence Web Scraping seo is planning to provide this blog scraping service without approval as many moderators do not have the time to read and approved each and every comment written by various visitors. We will find the High PR pages on the various blogs related to your website content and write the own comment about those blogs and provide the link of your website or anchor text. We don’t have the option or the way to track the blogs whether it is approved by moderator or not. We will give the link with comments what we have typed on the blogs as a report. It will increase the back link and increase the traffic.

What are the features of Blog scraping Service?

•    Will provide the comments or reviews to blogs which having related niche to your product.
•    Will write comments only high density or high ranking blogs.
•    Fast and More accurate promotion compared to other service
•    Understand the Blogs by reading carefully and comment accordingly
•    This service is optimized and SEO friendly.

What are the benefits of Blog scraping Service?

•    Effect of time spending for this service is very less.
•    This service is best method to increase your site traffic with minimal effect and cost.
•    Increase your web site rank in all search engines.
•    Reach your site to more number of audiences.
•    Increase your product sale.
•    Fast and more results.

What are the advantages of using this service in Web Scraping SEO?

•    Web Scraping SEO is one the top SEO service provider in the SEO Market.
•    Expert people working on Blog commenting service will always do analysis to find the high traffic blogs.
•    Web Scraping SEO will get the approval from Blogs administrator easily.
•    Provides High Quality Service with reasonable price.
•    Provides on time delivery.
•    More flexible to clients.
•    Always met the Client expectation and Provide quality service.

Frequently Asked Questions

Q: Will you provide the approval for each comment you typed on the blogs from blogsite moderator?

A: No, we are only responsible for creating comments for your website but we won’t wait for moderation approval, because Moderator is responsible for Approval, He may take time for approval that is according to Moderator’s scope. We will give only the blog links and the comments to you as a report.

Q: Do you have any system or software to track the approval of blog?

A: We don’t have any system or software to track the approval, we do comments in those top blog sites according to the matching keyword. That is only our job approval is from moderator side.

Q: Why you can’t get the approval for comments from moderator?

A: I can clearly answer this one, Because nowadays everyone is busy particularly the blogsite Moderators for that reason our comments got approved late. But we are not going to wait for that because we have a lot of works to do, But I assure you, that with the final reports that contains how many sites we have uploaded with your comments in MS Excel format will reach you.

Q: How do you select the blogs for commenting?

A: We are going to select top ranking blog sites related to your keywords, According to the benefits of your product we will give proper and attractive comments carefully.

Source: http://www.Web Scrapingseo.com/blog-scraping-service.aspx

Thursday, 30 April 2015

Lawyers & Attorneys Website Data Scraping Services

There are so many instances where one end’s up needing information from lawyers or bar associations. However, if you approach them directly or look for other ways to get information it might either be difficult or you might not get the information you are looking for. Thus, the best way to go about the scraping lawyer data.

Scraping lawyer data allow you to get information from various attorney websites, bar association websites, or other related websites. Using web scraping tools for getting such information makes it much easier to get all the relevant and important information without actually having to worry about the same.

If you wish to scrape data from lawyer, you are entitled to information such as lawyer name, firm names, address, contact details, history about the lawyers, educational qualifications, the bar association they are part of and much more.

Scraping lawyer data ensure that you also have images of the lawyer you are concentrating on. The result of scrape data form lawyer can be obtained in any format the user wants such as csv, excel, MySql etc. Scraping lawyer data also ensures that none of the information provided are repetitive or redundant.

If you are in need of information regarding any lawyer such as their contact details, address etc. it could end up being a huge and difficult task to get it manually or physically. Thus, taking off the help of scraping tools would ensure that you get all the needed information without actually having to bother about anything at all. The presence of lots of attorney websites and the fact that more and more lawyers are moving to the internet makes getting information easy with the help of some great tools. Scraping data is a very useful and handy method in which one can get all the required and relevant information and that too in a very easy to read format, which makes the method even worthier.

There are quite a few tools or services that you can take help of to get lawyers data scraped. Most of these services also provide with a sample demo and that free of cost. From the sample one can decide if they wish to continue with the services or try some other services. Thus, if you want any information from attorney websites or information about any lawyers, data scraping is a great way to get the same.

Source: https://3idatascraping.wordpress.com/2014/03/18/lawyers-attorneys-website-data-scraping-services/

Saturday, 25 April 2015

Data Mining and Market Research

Online market research attributes to success and growth of many businesses. Online market research in simple terms we can say it is the learning of current and the latest market situations which involve surveys, web and data mining modules. To date research by use of the internet it is very important since it depends on data gathered from internet services and then one can recognize that market research keeps the business successful.

A number of managers in small businesses have a mental deem in that online market research is obligatory to big or larger companies. For true you will understand that whether the businesses is medium, large or small actually need online marketing research and this is a reason why the significance of the process and allegation will approve the targeted and potential clients. In this case Data mining progression is employed to streamline on what targeted and potential clientele needs. Areas where data mining is used:

Preferences. In any given service or product, you will learn what a customer looking for and how your product or service is different from other competitors. By use of Data mining you will be able to determine the customer preferences and you will be able to modify your services and products meet the customer choice.

Buying patterns. What is known and created for purchasing patterns from different customers. A situation can be that customers try to spend a lot on certain products and little on others. But through Data mining it is easy to understand such purchasing patterns and finally plan the appropriate techniques to be used in the marketing.

Prices. To find out whether the company is selling its products to the clients or not prices are the key factors to take into account. One should understand on the right selling price of the products. Web scrapping is easier to find the suitable pricing.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/data-mining-market-research/

Thursday, 9 April 2015

What is HTML Scraping and how it works

There are many reasons why there may be a requirement to pull data or information from other sites, and usually the process begins after checking whether the site has an official API. There are very few people who are aware about the presence of structured data that is supported by every website automatically. We are basically talking about pulling data right from the HTML, also referred to as HTML scraping. This is an awesome way of gleaning data and information from third party websites.

Any webpage content that can be viewed can be scraped without any trouble. If there is any way provided by the website to the browser of the visitor to download content and use the same in a highly structured manner, in that case, accessing of the content programmatically is possible. HTML scraping works in an amazing manner.

Before indulging in HTML scraping, one can inspect the browser for network traffic. Site owners have a couple of tricks up their sleeve to thwart this access, but majority of them can be worked around.

Before moving on to how HTML scraping works, we must understand the reasons behind the same. Why is scraping needed? Once you get a satisfactory answer to this question, you can start looking for RSS or API feeds or various other traditional structured data forms. It is significant to understand that when compared with APIs, websites are more significant.

The most important advantage of the same is the maintenance of their websites where a lot of visitors visit rather than safeguarding structured data feeds. With Tweeter, the same has been publicly seen when it clamps down on the developer ecosystem. Many times, API feeds change or move without any prior warning. Many times, it can also be a deliberate attempt, but mostly, such issues or problems erupt as there is no authority or an organization that maintains or takes care of the structured data. It is rarely noticed, if the same gets severely mangled or goes offline. In case the website has certain issues or the website no longer works, the problem is more in the form of a ball in your court requiring dealing with the same without losing any time. api-comic-image

Rate limiting is another factor that needs a lot of thinking and in case of public websites, it virtually doesn’t exist. Besides some occasional sign up pages or captchas, many business websites fail to create and built defenses against any unwarranted automated access. Many times, a single website can be scraped for four hours straight without anyone noticing. There are chances that you would not be viewed under DDOS attack unless concurrent requests are being made by you. You will be seen just as an avid visitor or an enthusiast in the logs, that too, in case anyone is looking.

Another factor in HTML scraping is that one can easily access any website anonymously. Behavior tracking can be done with a few ways by the administrator of the website and this turns out to be beneficial if you want to privately gather the data. Many times, registration is imperative with APIs in order to get key and with any request being sent, this key also needs to be sent. But, in case of simple and straightforward HTTP requests, the visitor can stay anonymous besides cookies and IP address, which can again be spoofed.

The availability of HTML scraping is universal and there is no need to wait for the opening of the site for an API or for contacting anyone in the organization. One simply needs to spend some time and browse websites at a leisurely pace until the data you want is available and then find out the basic patterns to access the same.

Now you need to don a hat of a professional scraper and simply dive in. Initially, it may take some time to work up figuring out the way the data have been structured and the way it can be accessed just as we read APIs. If there is no documentation unlike APIs, you need to be a little more smart about it and use clever tricks.

Some of the most used tricks are

Data Fetching


The first thing that is required is data fetching. Find endpoints to begin with, that is the URLs that can help in returning the data that is required. If you are pretty sure about the data and the way it should be structured so as to match your requirements, you will require a particular subset for the same and later you can indulge in site browsing using the navigation tools.

GET Parameter

The URLs must be paid attention to and see the way it changes as you indulge in clicking between the sections and the way they divide into various subsections. Before starting, the other option that can be used is to straight away go to the search functionality of the site. Certain terms can be typed and the URL needs to be focused again for watching the changes on the basis of what is being searched. A GET parameter will be probably seen like q which changes on the basis of the search term used by you. Other GET parameters that are not being used can be removed from the URL until only the ones that are needed are left for data loading. Before a query string, there must always be a “?” beginning.

Now the time has come when you would have started to come across the data that you would like to see and want to access, but sometimes, there may be certain pagination issues that require to be dealt with. Due to these issues, you may not be able to see the data in its entirety. Single requests are kept away by many APIs as well from database slamming. Many times, clicking the next page can add some offset parameter that helps in data visibility on the page. All these steps will help you succeed in HTML scraping.

Source: https://www.promptcloud.com/blog/what-is-html-scraping-and-how-it-works/

Monday, 30 March 2015

Collect Targeted Data from Web Using Data Extractor Tools

The use of data to enhance your business prospects is a widely acknowledged fact. It is therefore very important that you have access to relevant data and not just any data in order to further your growth prospects. Utilizing the features and benefits of Web Scraper tools can help you achieve this goal effortlessly.

Customizing Web Extraction Tools for Your Business
The Internet is a maze of information repositories and identifying the right information from the right source may pose to be a major challenge. Moreover, data incorrectly sourced may result in erroneous analysis leading to a faulty strategy and slow growth for your business.  The risk is, however, considerably mitigated by employing Web extractor tools in your business processes and leveraging the advantages they provide.

Web extraction tools are used for the singular task of extracting relevant unstructured data from specific web sites and providing business users with a set of structured useable data. They perform this vital task with the help of scripting languages like python, Ruby, or Java. The biggest advantage of utilizing Web extraction tools is its ability to be customized as per the business requirement. This is easily achieved by defining the specific seed list you wish to scrape in the crawler script. A Seed list is the series of URLs that you wish to scan in order to extract the relevant data.  Thus defined, the crawler will scan only the targeted URLs. Along with the Seed list you can also specify the following relevant information to customize the scraper tool and ensure that it delivers as per your requirement. These defining parameters include:
  •     Define the number of pages you wish the scraper to crawl
  •     Define the specific file types you want the scraper to crawl
  •     Define the type of data you would like to extract

This ensures that you can launch a focused search for the specific type of data that you wish to extract and also defines the appropriate source you want the crawler to access.

Benefits of using Targeted Data

Every business pertains to a specific domain. Its growth prospects, its revenue and its present standing are all defined by the demands and dynamics of that domain. Therefore, undertaking a study of its individual domain is one of the chief pre-requisites that your business must concentrate its efforts on in order to accelerate its growth. Moreover, through your business, you need to conduct a detailed analysis of competitive data in order to remain contextual in your specialized domain. Web Extractor tools have been equipped to understand this need and scrape pertinent data to foster growth patterns that strike the right chords. Some of the benefits leveraged from the extraction of targeted data include:
  •     Updated financial information from competitor sites on stock prices and product prices helps you to estimate and launch competitive rates for your stocks and products
  •     Studying market trends for a competitor’s products help you to position your product and plan your promotional campaigns effectively
  •     Studying analytics of competitor websites will ensure that you are able to plan your web promotions in a far more effective way
  •     Extracting data from blogs and websites that cater to your personal interests and hobby areas help you to build up your own knowledge repository which you can leverage to achieve benefits for your business as and when required.

We are leading Webdatascraping.us company and enough capable to extract website information, review scraping, contact information scraping, business directory scraping, email list scraping etc.

Tuesday, 24 March 2015

Internet Data Mining - How Does it Help Businesses?

Internet has become an indispensable medium for people to conduct different types of businesses and transactions too. This has given rise to the employment of different internet data mining tools and strategies so that they could better their main purpose of existence on the internet platform and also increase their customer base manifold.

Internet data-mining encompasses various processes of collecting and summarizing different data from various websites or webpage contents or make use of different login procedures so that they could identify various patterns. With the help of internet data-mining it becomes extremely easy to spot a potential competitor, pep up the customer support service on the website and make it more customers oriented.

There are different types of internet data_mining techniques which include content, usage and structure mining. Content mining focuses more on the subject matter that is present on a website which includes the video, audio, images and text. Usage mining focuses on a process where the servers report the aspects accessed by users through the server access logs. This data helps in creating an effective and an efficient website structure. Structure mining focuses on the nature of connection of the websites. This is effective in finding out the similarities between various websites.

Also known as web data_mining, with the aid of the tools and the techniques, one can predict the potential growth in a selective market regarding a specific product. Data gathering has never been so easy and one could make use of a variety of tools to gather data and that too in simpler methods. With the help of the data mining tools, screen scraping, web harvesting and web crawling have become very easy and requisite data can be put readily into a usable style and format. Gathering data from anywhere in the web has become as simple as saying 1-2-3. Internet data-mining tools therefore are effective predictors of the future trends that the business might take.

If you are interested to know something more on Web Data Mining and other details, you are welcome to the Screen Scraping Technology site.

Source: http://ezinearticles.com/?Internet-Data-Mining---How-Does-it-Help-Businesses?&id=3860679

Sunday, 15 March 2015

About Web Scraping and Web Data Mining

Web scraping as suggested by the name simply refers to method of obtaining data or information from an array of websites. This has greatly revolutionized how companies obtain data and put this obtained data into significant use.This has greatly helped many firms and individuals in different spheres transact in the most effective ways. With the internet offering a very large base for obtaining information, various companies have resorted to use web scraping as method of getting information. Relevance of needed data is of great importance since it is the determining factor of what and how data has to be scraped. A good number of data mining companies have come up to help individuals and organizations get the information as per their requirements. These companies also provide software which when installed in a computer may be of great importance to the business.

Depending on the organizations background it may opt to choose between mining the data for themselves or actually employing the services of a data mining company. These organizations have data mining experts who actually are better suited to handle data professionally. As it sounds it is not every ones job since it is computer languages that are used therefore it is only those with relevant knowledge that are well suited to handle this jobs.

Although short cuts are considered dangerous, in this case hiring the services of this experts may bring with it better results with minimized costs than doing the job internally What brings about the idea of a company going for a particular data mining company? For obvious reasons it may because of some eye catching advertisement somewhere. Mostly businesses do extensive research when it comes to making this choice and depending on the gravity sensitivity and format of sort data. These companies provide the needed data in the most comprehensive and in the needed format hence wastage of time as a resource is unheard in these businesses.

web scraping and data mining Research done by these companies ought to be converted to meaningful results. This is done by carrying out meaning full analysis and deducing relevant conclusions from this data. This operation greatly improves the efficiency of these organizations. Analysis done on this is carried by asking relevant questions regarding some aspects regarding the operations of the business. Questions that are frequently asked may take a certain form like, how viable could this be in the short run? In the quest of these answers it is then that meaningful analysis is done.

Data mining companies have given the business word a major boost in the accusation of data from the internet which may now be considered as the largest information resource. It also through this data mining that results from surveys across various parts of the world is acquired. This eliminates the need for this company carrying out these researches for themselves .Of particular importance is the aspect of language barriers making an individual company seeks the services of a reputable data mining firm. Therefore from all the above considerations it can be deduced that, if only a business is to achieve its objectives only proper web scraping techniques from reputable firms should be employed.

Web data mining refers to ways and methods which are used in seeking information from a wide array of websites. Companies and individuals employ this in their daily operations since in the current word lack of information can be a major setback. This is simply because it is through data mining that enterprises will be able to market their businesses, get information regarding upcoming promotions and sometimes make relevant discoveries. This explains why companies are investing lots of resources all aimed in the search of relevant information. After this organizations have gathered this information implementation of obtained information is vital. Therefore data mining should be coupled with relevant implementation to count it as a success. Analysis of information is quite important .Since bulky information obtained may not be necessarily required in that form. This is done using software that is capable of giving a good analysis of the data.

Analysis is done in different ways depending on requirements like one may require a summary or categorized data. Previously when data mining was not greatly used software developments were minimal .Recently there are great improvements in this field since many organizations are embracing it particularly those in third world countries. This has greatly improved turnovers of a good number of companies. Previously many firms used to collect data manually. This of course proved to be a very slow method and a tiring one. Many firms had to increase their staff to cope with this bulk in workload. Considering this age where capitalism is thriving they risked being faced out since it is the case where only the strongest survive and the weaker ones pave way. Time was a factor in realizing an increase in number of organization using this technologically advanced approach. Usage of this collected information is actually used to foster better growth of the company.

Based on previous findings from various analysis techniques are employed by the firms employees irrespective of their ranks. For examples managers may employ web data mining to make good and realistic decisions that are consistent or better than those which other companies are using. Information may also aid in improvement of business infrastructure since in the modern word infrastructure development is on the rise. Better infrastructure acquired on time will actually give the business a big thrust ahead of their competitors. With the relevant data mining software’s companies are able to do meaningful research and developments. For instance companies are able to address issues regarding their customers preferences, their individual wants .

A company may easily know who their customers are, what they are their likes and also their economic abilities. This can be used when the company decides to give offers, discounts and many other customer enticing actions. For example a soft drink company will have to place its promotions during winter since it is then that their customers are unlikely to buy their services. With this great increase in number of resources on the websites no individual can afford to ignore data mining.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/247-web-scraping-and-web-data-mining/

Wednesday, 4 March 2015

Data Mining - Techniques and Process of Data Mining

Data mining as the name suggest is extracting informative data from a huge source of information. It is like segregating a drop from the ocean. Here a drop is the most important information essential for your business, and the ocean is the huge database built up by you.

Recognized in Business

Businesses have become too creative, by coming up with new patterns and trends and of behavior through data mining techniques or automated statistical analysis. Once the desired information is found from the huge database it could be used for various applications. If you want to get involved into other functions of your business you should take help of professional data mining services available in the industry

Data Collection

Data collection is the first step required towards a constructive data-mining program. Almost all businesses require collecting data. It is the process of finding important data essential for your business, filtering and preparing it for a data mining outsourcing process. For those who are already have experience to track customer data in a database management system, have probably achieved their destination.

Algorithm selection

You may select one or more data mining algorithms to resolve your problem. You already have database. You may experiment using several techniques. Your selection of algorithm depends upon the problem that you are want to resolve, the data collected, as well as the tools you possess.

Regression Technique

The most well-know and the oldest statistical technique utilized for data mining is regression. Using a numerical dataset, it then further develops a mathematical formula applicable to the data. Here taking your new data use it into existing mathematical formula developed by you and you will get a prediction of future behavior. Now knowing the use is not enough. You will have to learn about its limitations associated with it. This technique works best with continuous quantitative data as age, speed or weight. While working on categorical data as gender, name or color, where order is not significant it better to use another suitable technique.

Classification Technique

There is another technique, called classification analysis technique which is suitable for both, categorical data as well as a mix of categorical and numeric data. Compared to regression technique, classification technique can process a broader range of data, and therefore is popular. Here one can easily interpret output. Here you will get a decision tree requiring a series of binary decisions.

Our best wishes are with you for your endeavors.

Source: http://ezinearticles.com/?Data-Mining---Techniques-and-Process-of-Data-Mining&id=5302867

Friday, 27 February 2015

Basics of Online Web Research, Web Mining & Data Extraction Services

The evolution of the World Wide Web and Search engines has brought the abundant and ever growing pile of data and information on our finger tips. It has now become a popular and important resource for doing information research and analysis.

Today, Web research services are becoming more and more complicated. It involves various factors such as business intelligence and web interaction to deliver desired results.

Web Researchers can retrieve web data using search engines (keyword queries) or browsing specific web resources. However, these methods are not effective. Keyword search gives a large chunk of irrelevant data. Since each webpage contains several outbound links it is difficult to extract data by browsing too.

Web mining is classified into web content mining, web usage mining and web structure mining. Content mining focuses on the search and retrieval of information from web. Usage mining extract and analyzes user behavior. Structure mining deals with the structure of hyperlinks.

Web mining services can be divided into three subtasks:

Information Retrieval (IR): The purpose of this subtask is to automatically find all relevant information and filter out irrelevant ones. It uses various Search engines such as Google, Yahoo, MSN, etc and other resources to find the required information.

Generalization: The goal of this subtask is to explore users' interest using data extraction methods such as clustering and association rules. Since web data are dynamic and inaccurate, it is difficult to apply traditional data mining techniques directly on the raw data.

Data Validation (DV): It tries to uncover knowledge from the data provided by former tasks. Researcher can test various models, simulate them and finally validate given web information for consistency.

Should you have any queries regarding Web research or Data mining applications, please feel free to contact us. We would be pleased to answer each of your queries in detail.

Source: http://ezinearticles.com/?Basics-of-Online-Web-Research,-Web-Mining-and-Data-Extraction-Services&id=4511101

Wednesday, 25 February 2015

Web Data Extraction Services

Web Data Extraction from Dynamic Pages includes some of the services that may be acquired through outsourcing. It is possible to siphon information from proven websites through the use of Data Scrapping software. The information is applicable in many areas in business. It is possible to get such solutions as data collection, screen scrapping, email extractor and Web Data Mining services among others from companies providing websites such as Scrappingexpert.com.

Data mining is common as far as outsourcing business is concerned. Many companies are outsource data mining services and companies dealing with these services can earn a lot of money, especially in the growing business regarding outsourcing and general internet business. With web data extraction, you will pull data in a structured organized format. The source of the information will even be from an unstructured or semi-structured source.

In addition, it is possible to pull data which has originally been presented in a variety of formats including PDF, HTML, and test among others. The web data extraction service therefore, provides a diversity regarding the source of information. Large scale organizations have used data extraction services where they get large amounts of data on a daily basis. It is possible for you to get high accuracy of information in an efficient manner and it is also affordable.

Web data extraction services are important when it comes to collection of data and web-based information on the internet. Data collection services are very important as far as consumer research is concerned. Research is turning out to be a very vital thing among companies today. There is need for companies to adopt various strategies that will lead to fast means of data extraction, efficient extraction of data, as well as use of organized formats and flexibility.

In addition, people will prefer software that provides flexibility as far as application is concerned. In addition, there is software that can be customized according to the needs of customers, and these will play an important role in fulfilling diverse customer needs. Companies selling the particular software therefore, need to provide such features that provide excellent customer experience.

It is possible for companies to extract emails and other communications from certain sources as far as they are valid email messages. This will be done without incurring any duplicates. You will extract emails and messages from a variety of formats for the web pages, including HTML files, text files and other formats. It is possible to carry these services in a fast reliable and in an optimal output and hence, the software providing such capability is in high demand. It can help businesses and companies quickly search contacts for the people to be sent email messages.

It is also possible to use software to sort large amount of data and extract information, in an activity termed as data mining. This way, the company will realize reduced costs and saving of time and increasing return on investment. In this practice, the company will carry out Meta data extraction, scanning data, and others as well.

Source: http://ezinearticles.com/?Web-Data-Extraction-Services&id=4733722

Thursday, 19 February 2015

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source:http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Tuesday, 17 February 2015

Coal Seam Gas - Extraction and Processing

With rapidly depleting natural resources, people around the globe are looking for new sources of energy. Lots of people don't think much of it, but doing this is an excellent ecological move forward and may even be a lucrative endeavour. Australia has one the most significant deposits of a recently discovered gas known as coal seam gas. The deposit present in areas such as New South Wales is far more significant than the others since it contains little methane and much more carbon dioxide.

What is coal seam gas?

Coal bed methane is the more general term for this substance. It is a form of natural gas taken from substantial coal beds. The existence of this material usually spelled hazard for many sites. This stopped in recent decades, when specialists discovered its potential as an energy source. It's now among the most important sources of energy in a number of countries, particularly in North America. Extraction within australia is actually rapidly developing because of rich deposits in various parts of the country.

Extraction

The extraction procedure is reasonably challenging. It calls for heavy drilling, water pumping, and tubing. Though there are a variety of different processes, pipeline construction(an initial step) is perhaps one of the most important. The foundation of the course of action can spell a real difference between the failure or success of your undertaking.

Working with a Contractor

Pipeline construction and design is serious business. Seasoned contractors may be hard to get considering the fact that Australia's coal seam gas industry is still fairly young. You'll find only a limited number of completed and working projects across the country. There are several things to consider when getting a contractor for the project.

Find one with substantial experience within the industry sector. Some service providers have operations outside the country, especially in Canada And America. This is something you should look out for, as advancement of the gas originated there. Providers with completed projects in the said area can have the solutions required for any project to take off.

The construction process involves several basic steps. It is important the service provider you work with addresses all of your needs. Below are a few of the important supplementary services to look for.

- Pipeline design, production, and installation

- Custom ploughing (to achieve specialized trenching requirements)

- Protection and repair of pipelines with the use of various liners

- Pressure assessment and commissioning

These are only the fundamentals of pipeline construction. Sourcing coal seam gas involves many others. Do thorough research to ensure the service provider you employ is capable of completing all the necessary tasks. Other elements of the undertaking include engineering plus site preparation and rehabilitation. This industrial sector may be profitable if one makes all of the proper moves.

Avoid making uninformed decisions by doing as much research as you possibly can. Use the web to your advantage to look into a company's profile. Look for a portfolio of the projects they have completed in the past. You can gauge their trustworthiness based on their volume of clients. Check out the scope of their operations and the projects they finished.

You should also think about company policies concerning the quality of their work, safety and health, along with their policies concerning communities and the environment. These are seemingly minute but important details when searching for a contractor for pipeline construction projects.

Source: http://ezinearticles.com/?Coal-Seam-Gas---Extraction-and-Processing&id=6954936

Saturday, 31 January 2015

Data Mining Services in various types

How Companies Can the Most with Data Mining Services

The modern way to use data, effectively.

Data Mining is an act of transferring data into beneficial Information and actionable insight. Often known as Knowledge Discovery in Databases (KDD), Data Mining is a automated process to uncover a series of never-seen-before information in bulk quantities of data scenario. Post evaluating a series of random factors, which the human mind cannot easily look at or comprehend, it helps in reaching towards an actionable insight by means of progressive mathematical algorithms. These data mining reports are further distributed among esteemed influencers and stakeholders, and are used for enterprise-caliber data mining observations in an insightful manner.

The Process of Data Mining

Here’s a lowdown of a few used cases of how companies are using Data Mining Services in business: ASSOCIATION: Catching hold of frequently appearing observations. For instance, if you want to know which products are regularly purchased in pair, and could be offered together in a combo offer to boost sales.

CLASSIFICATION: Allowing the Data Mining experts at LoginWorks Software to attach observations towards repeated financial patterns of existing groups or categories. For instance, spotting fraudulent transactions or possibly bankrupt companies.

CLUSTERING:Identifying similarities and common ground between observations and groups. For instance, creating profiles for website users or clients by mapping website usage pattern and customer behavior.

DESCRIPTION:Detailing out patterns and showcasing them in a visual manner using explanatory analysis.

ESTIMATION: Revealing features that are difficult to observe with a straight-lined approach because of cost of observation or technical problems. PREDICTION: Predicting an estimated future using previous and present observations. for examples, predicting sales for the next financial period.

What are the Strategic Benefits of Incorporating Data Mining

A Comprehensive suite of Data Mining Services can help your company to:

•    Iron out strategic business problems with the use of number crunching, predictive and inferential analysis.

•    Recuperate your data mining atmosphere by making use of advanced algorithms, artificial neural networks, induction techniques, along with in-data and base-data mining technologies.

•    Automate business trends, understand human behavior and patterns predictions.

•    Do away with complexities of difficult-to-comprehend statistics and, need not necessarily require users to make use of complex applications/interface. Instead, we deliver compact results in the form of touch points, such as Excel, CSV, XML, text file and more.

•    Achieve high-end connectivity and communication capabilities.

The Power of LOGINWORKS Data Mining Services.

LOGINWORKS SOFTAWARES Data Mining Service is an advanced solution for predictive analytics designed to help companies in their strategic decision making. An ongoing process of discovery and interpretation, data mining unearths new and reliable patterns in your accumulated data and patterns, which you can make use of to adhere to testing business questions that calls for constant prediction and inference. With the ever evolving increase of business complexities, as well as the quantity and multiplicity of data, there’s a buzzing need for methods that are intelligently mechanical in nature and are backed by LOGINWORKS SOFTAWARES’ expert support; and data mining that fits the need of today’s businesses aptly. By and large, predictive data mining services makes use of pattern recognition technologies and statistical tools to help accelerate strategic business decisions and lead to more informed conversations with the target audience.

What is offered in our Data Mining Service.

•    First stage of discussion and estimating future direction: If your company would like to gain a competitive edge from our high-calibre Data Mining Services, do get in touch with our sales team at sales@loginworks.com so as to help you in understanding the most advanced benefits and opportunities.

•    Sharing feasibility statistics and studies: If you or your company has a clear view point of how you would want to make use of Data Mining in your flow of business, then do share with us your requirement to ask for a quote.

•    Segmentation and Profitability: Right from assessing the initial assessment to assessing the benefits and completing the data, we’ll share with you a comprehensive report on understanding of data needs.

•    The Final Stage: Data Mining Implementation Service: As soon as the Data Mining requirement is clearly undertstood, we build customized solutions to collect data in an automated fashion and export structured data into usable format.

BIG DATA SOLUTIONS AND SERVICES

Big data swiftly harnesses the ever-increasing volume on data on day-to-day basis and the incessant need of enterprisers to harness the true business value of such data in a quick turnaround time. Opening gates to a world of opportunities to find new and insightful calculations, Big Data can be generated at a variety of myriad speeds and types. This data further lends organizations, especially the burgeoning e-commerce industry of today, a competitive advantage, where estimated predictions becomes the bedrock of constant in-flow of costs and revenue.

LOGINWORKS SOFTWARES BIG DATA ADVANTAGE

Unearth the power of the accumulated data by making significant inroads into the digital revolution of 21st century. Leverage the advantage by using LOGINWORKS SOFTWARES end-to-end Big Data Solutions and Services. Our passion, backed with years of domain expertise and rich technical prowess empowers you to outline a Big Data strategy for your business to help uplift your overall IT roadmap, architect and re-imagine your business strategies. With us, you get the following services: Our all-encompassing  THINK, DEVELOP AND IMPLEMENT model for Big Data Services aids you to pick up the best strategies to adopt and use data. Our principle areas of focus for Big Data services are:

•    Big Data Management for the IT Organization
•    Big Data Analytics for the Business Organization

*change the Think, Build and Operate Model headline with THINK, DEVELOP AND IMPLEMENT model. big data process chart LOGINWORKS SOFTWARES Data Mining Services, also known as Loginworks DataStream is a perfect amalgamation of unlimited volumes, robust technology and matchless expertise. What sets up apart is our one-of-a-kind personalised approach, which makes use of optimal data warehouse technology. IF YOU ARE READY TO TAKE THE ADVANTAGE OF DATA MINING AND BOOST YOUR BUSINESS

– CONTACT LOGINWORKS SOFTWARES TODAY!

Source: http://www.loginworks.com/blogs/web-scraping-blogs/data-mining-services-various-types/